预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

3.3实数第1课时实数的概念【知识与技能】从感性上认可无理数的存在并通过探索说出无理数的特征弄清有理数与无理数的本质区别了解并掌握无理数、实数的概念以及实数的分类知道实数与数轴上的点的一一对应关系.【过程与方法】让学生经历数系扩展的过程体会数系的扩展源于社会实际又为社会实际服务的辩证关系.【情感态度】培养学生勇于发现真理的科学精神渗透“数形结合”及分类的思想和对立统一、矛盾转化的辨证唯物主义观点.【教学重点】无理数、实数的概念和实数的分类.【教学难点】无理数与有理数的本质区别实数与数轴上的点的一一对应关系.一、情景导入初步认知我们在前面学过无理数什么样的数是无理数呢?举例说明?【教学说明】复习相关内容为本节课的教学作准备.二、思考探究获取新知1.下列各数中哪些是有理数?哪些是无理数?、0、1、414、、π、-、、0.1010010001…(相邻两个1之间逐次增加一个0)【教学说明】学生自己回忆有理数、无理数的分类为引入实数的概念及分类作好铺垫.【归纳结论】有理数和无理数统称为实数.2.根据实数的概念你能对实数分类吗?【归纳结论】实数以概念可分为:【教学说明】通过对实数进行分类让学生进一步领会分类的思想培养学生从多角度思考问题为他们以后更好地学习新知识作准备.同时也能使学生加深对无理数和实数的理解.3.任何有理数都可以用数轴上唯一的一个点来表示那么无理数是否可以用数轴上的点来表示呢?思考:如何用数轴上的点表示无理数和-?我们已经知道一个面积为8的正方形的边长是因此我们以原点为圆心以正方形的边长为半径画弧与正半轴的交点M就表示与负半轴的交点N就表示-8如图所示:这样我们就分别用数轴上唯一的一个点表示出了无理数和-.事实上每一个无理数都可以用数轴上唯一的一个点来表示.【归纳结论】每一个实数都可以用数轴上唯一的一个点来表示.反过来数轴上每一个点都表示唯一的一个实数.即:实数和数轴上的点一一对应.4.实数从正负性又如何分类呢?【归纳结论】实数分为正实数、零、负实数.5.有理数中有互为相反数的两个有理数那么实数中有没有互为相反数的两个实数呢?举例说明.6.对于实数a的绝对值又是什么样的呢?【归纳结论】设a表示一个实数则:【教学说明】使学生通过类比的方式得到实数的相关知识加深对实数的理解.三、运用新知深化理解1.教材P118例1.2.判断下列说法是否正确(1)无限小数都是无理数(2)有理数都是有限小数(3)无理数都是无限小数(4)带根号的数都是无理数答案:四个全是错的.3.实数x满足x+x2=0则x是(C)A.非零实数B.非负数C.零和负数D.负数4.当x时式子有意义.答案:≥-55.如图在数轴上表示实数14的点可能是(C)A.点MB.点NC.点PD.点Q6.下列各数中哪些是有理数哪些是无理数?π、-3.1415926、、、3、、0、、、0.5、3.14159、-0.0200200020、13、、、0.10010001…答案:略.7.求-、3-π的相反数和绝对值解:-的相反数是绝对值是;3-π的相反数是π-3绝对值是π-3.【教学说明】巩固提高.四、师生互动课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题3.3”中第1、2题.本次教学我坚持从兴趣入手从差异入手做到了在细致处求真、求创意真正地使学生表明自己的看法阐述自己的观点大胆表现自我张扬个性体现出他们这个年龄应有的特点因此我认为这节课不仅很好地实现了知识与技能目标对于过程与方法和情感态度与价值观两个目标的实现也非常到位是比较成功的.