预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

3.1.4空间向量的正交分解及其坐标表示平面向量基本定理:在空间中,能得出类似的结论:(1)任意不共面的三个向量都可做为空间的一个基底。x二、空间直角坐标系下空间向量的直角坐标x已知空间四边形OABC,其对角线为OB,AC,M,N,分别是对边OA,BC的中点,点P,Q是线段MN三等分点,用基向量OA,OB,OC表示向量OP,OQ.例2、1、在空间坐标系o-xyz中,(分别是与x轴、y轴、z轴的正方向相同的单位向量)则的坐标为。2、点M(2,-3,-4)在坐标平面xoy、xoz、yoz内的正投影的坐标分别为,关于原点的对称点为,关于轴的对称点为,空间向量运算的坐标表示,则若A(x1,y1,z1),B(x2,y2,z2),则二、距离与夹角的坐标表示在空间直角坐标系中,已知、,则证明:小结:1、空间向量的坐标运算;2、利用向量的坐标运算判断空间几何关系的关键:首先要选定单位正交基,进而确定各向量的坐标,再利用向量的坐标运算确定几何关系。