预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共37页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

1.众数、中位数、平均数1、求下列各组数据的众数3、在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如下表所示:二、众数、中位数、平均数与频率分布直方图的关系0.50.5归纳总结得:因为在频率分布直方图中,各小长方形的面积表示相应各组的频率,也显示出样本数据落在各小组的比例的大小,所以从图中可以看到,在区间[2,2.5)的小长方形的面积最大,即这组的频率是最大的,也就是说月均用水量在区间[2,2.5)内的居民最多,即众数就是在区间[2,2.5)内。众数在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标。0.50.5归纳总结得:在样本中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数,因此,在频率分布直方图中,中位数左边和右边的直方图的面积应该相等,由此可以估计中位数的值。在这个频率分布直方图中,左边的直方图的面积代表50个单位,右边的直方图也是代表50个单位,它们的分界线与x轴交点的横坐标就是中位数。中位数在样本数据的频率分布直方图中,就是把频率分布直方图划分左右两个面积相等的分界线与x轴交点的横坐标。思考讨论以下问题:1、2.02这个中位数的估计值,与样本的中位数值2.0不一样,你能解释其中原因吗?0.50.50.5总结归纳得:平均数是频率分布直方图的“重心”,是直方图的平衡点。先找出每个小长方形的“重心”,即每小组的平均数,再按比例算出直方图的平均数。平均数在样本数据的频率分布直方图中,等于频率分布图中每个小长方形面积乘以小矩形底边中点的横坐标之和。三种数字特征的优缺点2、中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也会成为缺点。如上例中假设有某一用户月均用水量为10t,那么它所占频率为0.01,几乎不影响中位数,但显然这一极端值是不能忽视的。3、由于平均数与每一个样本的数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数都不具有的性质。也正因如此,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息,但平均数受数据中的极端值的影响较大,使平均数在估计时可靠性降低。众数、中位数、平均数的简单应用思考讨论以下问题:2、“用数据说话”,这是我们经常听到的一句话。但是,数据有时也会被利用,从而产生误导。例如,一个企业中,绝大多数人是一线工人,他们的年收入可能是一万元左右,另有一些经理层次的人,年收入过到几十万元。这时年收入的平均数比中位数大得多。尽管这时的中位数比平均数更合理些,但是这个企业的老板到人力市场去招聘工人时,也许更可能用平均数来回答有关工次待遇的指问。这个企业的老板以员工平均工资收入水平去描述他们单位的收入情况。这是不合理的,因为这些员工当中,少数经理层次的收入与大多数一般员工收入的差别比较大,所以平均数不能反映该单位员工的收入水平。这个老板的话有误导与蒙骗行为。练习假设你是一名交通部门的工作人员,你打算向市长报告国家对本市26个公路项目投资的平均资金数额,其中一条新公路的建设投资为2000万元人民币,另外25个项目的投资是20~100万元。中位数是25万元,平均数是100万元,众数是20万元。你会选择哪一种数据特征来表示国家对每一个项目投资的平均金额?你选择这种数字特征的缺点是什么?答:这里应该采用平均数来表示每一个国家项目的平均金额,因为这能反映所有项目的信息。但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大。2.标准差(甲)甲的环数极差=10-4=6乙的环数极差=9-5=4.它们在一定程度上表明了样本数据的分散程度,与平均数一起,可以给我们许多关于样本数据的信息.显然,极差对极端值非常敏感,注意到这一点,我们可以得到一种“去掉一个最高分,去掉一个最低分”的统计策略.考虑一个容量为2的样本:标准差还可以用于对样本数据的另外一种解释.例如:在关于居民月均用水量的例子中,平均数标准差s=0.868例3甲乙两人同时生产内径为25.40mm的一种零件.为了对两人的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm)分析:每一个工人生产的所有零件的内径尺寸组成一个总体,由于零件的生产标准已经给出(内径25.40mm),生产质量可以从总体的平均数与标准差两个角度来衡量.但是这两个总体的平均数与标准差都是不知道的,根据用样本估计总体的思想,我们可以通过抽样分别获得相应的样体数据,然后比较这两个样本的平均数,标准差,以此作为两个总体之间的估计值.从样本平均数看,甲生产的零件内径比乙生产的更接近内径标准(25.40mm),但是差异很小;从样本标准差看,由于