预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

本发明公开了一种基于流量分类的网络入侵检测方法,包括以下步骤:1.对网络流量数据进行数据处理,得到总体样本集;2.建立基于深度自注意力机制与密集Inception结构的网络入侵检测模型DCADenseIncept为网络流量数据提取初级特征,生成特征表示XL;3.在DCADenseIncept之后附属基于卷积增强Transformer结构的网络入侵检测模型CeIT,结合卷积特征提取、空间局部增强及Transformer建立远程依赖的优势,为XL提取高级特征,生成特征表示XH;4.将特征表示XH通过分类器进行分类检测并计算总体损失,利用Adam优化算法自动更新模型参数,得到最终的网络入侵检测模型。本发明中的模型能够加强特征的处理方式与利用效率,具备优异的表达能力与网络入侵检测效果,可以辅助系统对抗网络攻击。