预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

本发明公开了一种基于网络流量的电力物联网入侵检测方法,包括如下步骤:1)使用CNN(卷积神经网络)和RNN(循环神经网络)来搭建入侵检测分类模型;2)基于R?Drop方法对模型进行优化;3)边缘物联代理使用训练后量化模型转换方法缩减入侵检测分类模型大小,使模型能够部署到存储空间有限的边缘物联设备上,完成网络流量分类模型的搭建,边缘物联代理通过读取实时流量运行该轻量级分类模型、执行入侵检测分类任务。本发明提出适合电力物联网的基于RNN和CNN入侵检测分类模型;使用R?drop正则方法训练优化,有效提升入侵检测分类模型速度和性能;分类模型能够以较低的计算资源消耗、高效的计算效率在电力物联网边缘物联代理设备上完成入侵检测分类任务。