联邦学习、资料风险评估方法、装置和系统.pdf
小云****66
亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
联邦学习、资料风险评估方法、装置和系统.pdf
本说明书实施例公开了一种联邦学习、资料风险评估方法、装置及系统,在所述方法中,资料所有方作为联邦学习中的参与方,基于本地用户资料数据对目标模型进行训练,得到所述目标模型的梯度并反馈给联邦学习中的协调方,其中,所述目标模型用于评估用户资料存在的风险;协调方对至少两个资料所有方反馈的梯度进行整合,得到目标模型的更新梯度并发送至资料所有方;资料所有方基于所述更新梯度和本地用户资料数据,再次对目标模型进行训练,并向协调方反馈再次训练得到的梯度。
联邦学习方法、联邦学习装置及联邦学习系统.pdf
本说明书实施例提供用于经由至少两个第一成员设备和第二成员设备训练业务模型的联邦学习方法,联邦学习装置和联邦学习系统。各个第一成员设备具有本地数据,第二成员设备维护待训练的业务模型。在进行联邦学习时,在各个第一成员设备从第二成员设备接收当前业务模型后,使用本地数据训练所接收的当前业务模型,基于本地训练出的业务模型中的模型参数的参数更新量,确定各个模型参数的参数稳定性,并且将被确定为参数不稳定的模型参数的本地更新值提供给第二成员设备。第二成员设备根据从各个第一成员设备接收的模型参数的本地更新值更新业务模型。
联邦学习方法、联邦学习装置及联邦学习系统.pdf
本说明书实施例提供用于经由至少两个第一成员设备和第二成员设备训练业务模型的联邦学习方法,联邦学习装置和联邦学习系统。各个第一成员设备具有本地数据,第二成员设备维护待训练的业务模型。在进行联邦学习时,在各个第一成员设备从第二成员设备接收当前业务模型后,各个第一成员设备使用本地数据训练所接收的当前业务模型,确定本地训练出的业务模型与所接收的业务模型之间的模型相关性,并且仅仅在模型相关性满足预定条件时才将本地训练出的模型更新量提供给第二成员设备。第二成员设备根据从各个第一成员设备接收的模型更新量更新业务模型。
联邦学习方法、装置及联邦学习系统.pdf
本说明书的实施例提供一种联邦学习方法、装置及联邦学习系统。联邦学习系统包括至少两个第一成员设备和第二成员设备,第一成员设备具有用于全局模型训练的本地数据。在各个第一成员设备处,使用本地数据训练全局模型得到各个模型参数的本地参数更新量;从全局模型的模型参数中选择适合于本地训练的部分模型参数;并将所选择的模型参数的本地参数更新量发送给第二成员设备。在第二成员设备处,使用从各个第一成员设备接收的本地参数更新量重构全局模型的各个模型参数的参数更新量;基于所述重构的各个模型参数的参数更新量进行全局模型更新;以及将更
风险评估系统的构建方法及装置、风险评估方法及装置.pdf
本说明书实施例提供一种风险评估系统的构建方法,包括:利用第一标注事件样本集训练第一风险评估模型,所述第一标注事件样本集中包括第一数量的黑样本和第二数量的白样本,所述第一数量大于第二数量;利用训练好的第一风险评估模型处理多个灰样本,得到其中各个灰样本的预测风险分,所述各个灰样本被已有的风控技术识别为风险样本;基于所述预测风险分,从所述多个灰样本中选取部分灰样本,作为对第二标注事件样本集中黑样本的扩充;所述第二标注事件样本集中初始包括第三数量的黑样本和第四数量的白样本,所述第三数量小于第四数量;利用扩充后的第