预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共26页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

学案2平面向量的基本定理及坐标表示名师伴你行返回目录名师伴你行1.两个向量的夹角(1)定义已知两个向量a和b,作OA=a,OB=b,则∠AOB=θ叫做向量a与b的夹角(如图).(2)范围向量夹角θ的范围是,a与b同向时,夹角θ=;a与b反向时,夹角θ=.(3)向量垂直如果向量a与b的夹角是,则a与b垂直,记作.2.平面向量基本定理及坐标表示(1)平面向量基本定理如果e1,e2是同一平面内的两个向量,那么对于平面内的任意向量a,有且只有一对实数λ1,λ2,使a=.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组.(2)平面向量的正交分解把一个向量分解为两个的向量,叫做把向量正交分解.(3)平面向量的坐标表示①在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底.对于平面内的一个向量a,有且只有一对实数x,y,使得a=xi+yj.把有序数对叫做向量a的坐标,记作a=,其中叫做a在x轴上的坐标,叫做a在y轴上的坐标.②设OA=xi+yj,则就是终点A的坐标,即若OA=(x,y),则A点坐标为,反之亦成立(O是坐标原点).3.平面向量的坐标运算(1)加法、减法、数乘运算(2)向量坐标的求法已知A(x1,y1),B(x2,y2),则AB=(x2-x1,y2-y1),即一个向量的坐标等于该向量的坐标减去的坐标.(3)平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),其中b≠0,则a与b共线a=.如右图,在△ABC中,点M是边BC的中点,点N在边AC上,且AN=2NC.AM与BN相交于点P,求AP:PM的值.【解析】设BM=e1,CN=e2,则AM=AC+CM=-3e2-e1,BN=BC+CN=2e1+e2.∵A,P,M和B,P,N分别共线,∴存在实数λ,μ使AP=λAM=-λe1-3λe2,BP=μBN=2μe1+μe2,故BA=BP-AP=(λ+2μ)e1+(3λ+μ)e2.而BA=BC+CA=2e1+3e2,λ+2μ=2λ=3λ+μ=3,μ=.故AP=AM,即AP:PM=4:1.(1)充分挖掘题目中的有利条件,本题中两次使用三点共线.注意方程思想的应用.(2)用基底表示向量也是用向量解决问题的基础.应根据条件灵活应用,熟练掌握.设OA,OB不共线,P点在AB上,求证:OP=λOA+μOB且λ+μ=1(λ,μ∈R).【分析】利用向量的坐标运算解题.【解析】①中,∵|a|=1,∴|a|≠|b|,①错;②项,∵a·b=1×+0×=,②错;③项,(a-b)·b=a·b-|b|2=0,故③项正确,④不正确.正确的只有③.利用平面向量的坐标运算分别判断四个选项的正误.已知A(-2,4),B(3,-1),C(-3,-4).设AB=a,BC=b,CA=c,且CM=3c,CN=-2b.(1)求3a+b-3c;(2)求满足a=mb+nc的实数m,n;(3)求M,N的坐标及向量MN的坐标.【解析】由已知得a=(5,-5),b=(-6,-3),c=(1,8).(1)3a+b-3c=3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵mb+nc=(-6m+n,-3m+8n),-6m+n=5m=-1-3m+8n=-5,n=-1.(3)∵CM=OM-OC=3c,∴OM=3c+OC=(3,24)+(-3,-4)=(0,20).∴M(0,20).又∵CN=ON-OC=-2b,∴ON=-2b+OC=(12,6)+(-3,-4)=(9,2),∴N(9,2).∴MN=(9,-18).平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1).回答下列问题:(1)若(a+kc)∥(2b-a),求实数k;(2)设d=(x,y)满足(d-c)∥(a+b)且|d-c|=1,求d.【解析】(1)∵(a+kc)∥(2b-a),又∵a+kc=(3+4k,2+k),2b-a=(-5,2),∴2×(3+4k)-(-5)×(2+k)=0,∴k=-.(2)∵d-c=(x-4,y-1),a+b=(2,4),又(d-c)∥(a+b)且|d-c|=1,4(x-4)-2(y-1)=0(x-4)2+(y-1)2=1,x=4+x=4-y=1+y=1-.∴d=()或().向量平行的坐标公式实质是把向量问题转化为实数的运算问题.通过坐标公式建立参数的方程,通过解方程或方程组求得参数,充分体现了方程思想在向量中的应用.已知向量a=(1,2),b=(x,1),u=a+2b,v=2a-b,且u∥v,求实数x的值.1.要区分点的坐标与向量的坐标,尽管在形式上它们完全一样,但意义完全不同,向量的坐标中同样有方向与大小的信息.2.在处理分点问题比如碰到条件“若P是线段AB的分点,且|PA|=2|PB|”时,P可