基于改进UNET神经网络的医学图像分割装置及采用该装置的子宫体超声图像分析方法.pdf
一只****写意
亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于改进UNET神经网络的医学图像分割装置及采用该装置的子宫体超声图像分析方法.pdf
本发明公开了一种基于改进UNET神经网络的医学图像分割装置,该医学图像分割装置基于改进UNET的USNET网络,包括多个卷积子网和一个输出卷积层;多个所述卷积子网具有尺寸不小于3×3的卷积核,其尺寸从输入到输出逐步增大;每个所述卷积子网的最后均有1个池化层,所述池化层的最大池化操作步长设置为1,不使用降采样和升采样;本发明还公开了应用前述USNET网络进行超声图像分割的子宫体超声图像分析方法。与通常的UNET深度神经网络不同,各个卷积子网结构相同,只是卷积核大小和池化层操作尺寸不同,可以在不降低空间分辨的
基于UNet卷积神经网络的膀胱超声图像分割方法及装置.pdf
本发明提供了一种基于UNet卷积神经网络的膀胱超声图像分割方法及装置,所述方法包括,利用超声扫描设备获取人体的膀胱超声图像;构建膀胱超声图像的训练集和测试集,训练集和测试集中包括了经过标注和数据增强处理后的所有膀胱超声图像数据;构建UNet卷积神经网络模型,所述UNet卷积神经网络模型包括下采样层和上采样层;利用膀胱超声图像的训练集图像数据对构建的UNet网络模型进行训练,生成网络模型,并利用膀胱超声图像的测试集图像数据对模型效果进行测试;利用训练好的UNet网络模型对超声设备获取的实际膀胱超声图像进行分
医学超声图像分割方法及装置.pdf
本发明提供了一种医学超声图像分割方法及装置,所述方法包括,利用超声扫描设备获取人体超声图像;对语义分割模型进行训练,得到语义分割预测模型;根据语义分割预测模型,对待检测图像进行分割;对分割的待检测图像进行优化处理,得到最终的目标区域。本发明的有益效果在于:通过将深度学习方法与传统图像处理方法相结合,可以有效解决超声图像信噪比比较低时容易产生的分割不准确的问题,能提高膀胱超声图像的分割精度,提高算法的抗干扰性能。
医学图像超体素分割方法和装置.pdf
本发明公开了一种医学图像超体素分割方法和装置,所述方法包括以下步骤:基于DICOM文件获取待分割组织结构的三维体数据和所述体数据中每个体素的密度值;将所述三维体数据预分割为多个正方体,初始化种子点;对于每个种子点,根据所述密度和位置信息,计算所述种子点和其他体素之间的基于密度?位置约束的测地距离;根据所述基于密度?位置约束的测地距离,采用快速行进法确定所有体素的分类标签,完成所述三维体数据的分割。本发明的超体素分割方法相对于现有技术,分割精度和效率均有显著提高。
图像分割方法及图像分割装置.pdf
本发明的实施例中公开了一种图像分割方法和图像分割装置,所述方法包括:使图像采集装置对目标区域进行图像的数据采集;使激光扫描装置对所述目标区域进行点云的数据采集;对所述点云进行分类;将所述点云映射为图像采集装置成像平面上的投影点;获取每个类别点云对应的投影点的在成像平面上的分割轮廓;根据所述分割轮廓,对所述图像进行分割。本发明能提高图像分割的准确性。