一种基于全卷积神经网络的伪装物体分割方法.pdf
St****36
亲,该文档总共11页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于全卷积神经网络的伪装物体分割方法.pdf
本发明公开了一种基于全卷积神经网络的伪装物体分割算法,具体包括如下步骤:步骤1,图像特征提取模块;步骤2,构建图像分类模块;步骤3,构建基于全卷积神经网络的目标分割模块;步骤4,融合分类模块与目标分割模块的输出结果。采用本发明,通过实验结果表明,可以有效的识别并分割图像中的伪装物体,丰富了人工智能和计算机视觉的方法体系,为伪装物体分割领域提升分割效果提供了一种选择。
一种基于多监督全卷积神经网络的图像分割方法.pdf
本发明涉及一种多监督全卷积神经网络的图像分割方法,该方法在全卷积神经网络(FCN)的基础上做了进一步的优化,提出了一种新的网络结构,该网络结构拥有三个有监督的边输出层,有监督的边输出层可以指导网络学习多尺度特征,让网络同时获得图像的局部特征和全局特征。与此同时,为了更多的保留图像中的上下文信息,在网络的上采样部分,采用多个特征通道对输出的特征图进行上采样。最后,用一个带有权重的融合层将多个边输出层的分类结果融合,得到最终的图像分割结果。本发明实现的方法具有分割准确率高,分割速率快的特点;在骨肉瘤CT数据分
基于全卷积神经网络的左心室图像分割方法.docx
基于全卷积神经网络的左心室图像分割方法基于全卷积神经网络的左心室图像分割方法摘要:针对左心室图像分割在心脏病诊断和治疗中的重要性,本文提出了一种基于全卷积神经网络的左心室图像分割方法。该方法通过使用全卷积神经网络进行图像分割,能够有效地提取和分析左心室的关键信息,辅助医生进行准确的病情判断和治疗决策。实验结果表明,该方法在左心室图像分割中取得了较好的效果。关键词:全卷积神经网络;左心室图像分割;心脏病诊断引言心脏病是世界范围内死亡率较高的疾病之一,因此对心脏病的准确诊断和及时治疗尤为重要。而左心室图像分割
基于全卷积神经网络的林木图像分割.docx
基于全卷积神经网络的林木图像分割论文:基于全卷积神经网络的林木图像分割摘要:林木图像分割是林业领域中很重要的一个问题,它能够为研究森林生态系统、交通规划等方面提供帮助。本文提出了一种基于全卷积神经网络的林木图像分割方法,该方法采用了深度学习技术,并使用了一个经过预训练的模型来进行图像分割。本文采用了以VGG为基础网络的FCN8s架构,并对其进行了修改以适用于林木图像分割问题。通过对训练数据的训练,实验结果表明该方法在分割结果方面表现良好,并且能够具有较好的泛化能力。关键词:林木图像分割、全卷积神经网络、深
基于轻量级全卷积神经网络的医学图像分割方法.pdf
本发明请求保护一种基于轻量级全卷积神经网络的医学图像分割方法。首先对数据集进行灰度化、归一化、对比度受限自适应直方图均衡(CLAHE)、伽马校正等预处理;然后,对训练集进行随机的提取patch和测试集顺序提取patch图以完成数据增强;接着,搭建由收缩路径(左侧)和扩张路径(右侧)组成的全卷积神经网络架构,针对图像数量较少的数据集设计留一法(leave‑one‑out)训练方法;最后,通过通道稀疏正则化训练、裁剪比例因子小于设定阈值的通道以及微调裁剪后的网络完成BN通道模型裁剪,得到轻量级全卷积神经网络,