基于全卷积神经网络的左心室图像分割方法.docx
快乐****蜜蜂
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
基于全卷积神经网络的左心室图像分割方法.docx
基于全卷积神经网络的左心室图像分割方法基于全卷积神经网络的左心室图像分割方法摘要:针对左心室图像分割在心脏病诊断和治疗中的重要性,本文提出了一种基于全卷积神经网络的左心室图像分割方法。该方法通过使用全卷积神经网络进行图像分割,能够有效地提取和分析左心室的关键信息,辅助医生进行准确的病情判断和治疗决策。实验结果表明,该方法在左心室图像分割中取得了较好的效果。关键词:全卷积神经网络;左心室图像分割;心脏病诊断引言心脏病是世界范围内死亡率较高的疾病之一,因此对心脏病的准确诊断和及时治疗尤为重要。而左心室图像分割
基于卷积神经网络的超声图像左心室分割方法.pptx
基于卷积神经网络的超声图像左心室分割方法目录添加章节标题卷积神经网络的基本原理卷积神经网络的结构卷积神经网络的学习过程卷积神经网络在图像分割中的应用超声图像左心室分割的重要性超声图像的特点左心室分割的意义左心室分割的挑战基于卷积神经网络的超声图像左心室分割方法数据预处理特征提取左心室分割结果评估实验结果与分析实验设置实验结果结果分析与其他方法的比较讨论与展望当前方法的局限性未来改进方向在其他医学影像分析中的应用前景THANKYOU
基于全卷积神经网络的林木图像分割.docx
基于全卷积神经网络的林木图像分割论文:基于全卷积神经网络的林木图像分割摘要:林木图像分割是林业领域中很重要的一个问题,它能够为研究森林生态系统、交通规划等方面提供帮助。本文提出了一种基于全卷积神经网络的林木图像分割方法,该方法采用了深度学习技术,并使用了一个经过预训练的模型来进行图像分割。本文采用了以VGG为基础网络的FCN8s架构,并对其进行了修改以适用于林木图像分割问题。通过对训练数据的训练,实验结果表明该方法在分割结果方面表现良好,并且能够具有较好的泛化能力。关键词:林木图像分割、全卷积神经网络、深
基于轻量级全卷积神经网络的医学图像分割方法.pdf
本发明请求保护一种基于轻量级全卷积神经网络的医学图像分割方法。首先对数据集进行灰度化、归一化、对比度受限自适应直方图均衡(CLAHE)、伽马校正等预处理;然后,对训练集进行随机的提取patch和测试集顺序提取patch图以完成数据增强;接着,搭建由收缩路径(左侧)和扩张路径(右侧)组成的全卷积神经网络架构,针对图像数量较少的数据集设计留一法(leave‑one‑out)训练方法;最后,通过通道稀疏正则化训练、裁剪比例因子小于设定阈值的通道以及微调裁剪后的网络完成BN通道模型裁剪,得到轻量级全卷积神经网络,
基于全卷积神经网络的SAR海面溢油图像分割方法.docx
基于全卷积神经网络的SAR海面溢油图像分割方法标题:基于全卷积神经网络的SAR海面溢油图像分割方法摘要:合理高效地进行溢油图像分割对于海洋环境的监测和溢油事故的应急响应具有重要意义。基于合成孔径雷达(SAR)图像的海面溢油图像分割是近年来的研究热点之一。本文提出了一种基于全卷积神经网络(FCN)的SAR海面溢油图像分割方法。该方法采用深度学习技术对SAR图像进行端到端的特征学习和像素级别的分类,能够有效地将溢油区域与海水区域进行准确的分割。实验结果表明,该方法在溢油图像分割方面取得了优秀的性能。关键词:S