预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

本发明涉及一种边云架构下基于深度强化学习的多目标优化卸载策略,用于解决现有技术所存在的终端设备计算能力有限的问题,进而提高系统整体处理任务的效率。首先确定边云架构,然后根据边云架构建立系统模型、通信模型和计算模型;进一步建立联合优化模型。根据联合优化模型,结合深度强化学习算法的优点,采用深度确定性策略梯度DDPG算法求解最优的卸载策略,其中,DDPG算法的使用需要根据系统模型、计算模型和联合优化模型构建一个深度强化学习模型,模型包括四个部分,状态单元,动作单元,奖惩制和Q值函数。DDPG算法在优化深度强化学习模型得到最优卸载策略的同时,减少了系统执行任务的整体开销。