预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

原子力显微镜及其在生物学研究中的应用原子力显微镜自从问世以来在生物学研究中有其不可替代的作用,是生命科学研究中不可缺少的工具。原子力显微镜(AFM)技术本身有许多优势,如样品制备简单,可在多种环境中运作,高分辨率等等。本文主要从生物化学、细胞生物学、免疫学和物质超微结构研究等几个方面对其在生物学中的应用进行综述。原子力显微镜(AFM)的优势原子力显微镜(AFM)是80年代初问世的扫描探针显微镜(scanningprobemicroscope,SPM)的一种。1986年,Dr.Binning因发明扫描探针显微镜而获得诺贝尔物理奖。这种显微镜的放大倍数远远超过以往的任何显微镜:光学显微镜的放大倍数一般都超不过1000倍;电子显微镜的放大倍数极限为100万倍;而原子力显微镜的放大倍数能高达10亿倍,比电子显微镜分辨率高1000倍,可以直接观察物质的分子和原子,这为人类对微观世界的进一步探索提供了理想的工具。原子力显微镜(AFM)本身的优势是其在生物学中得以迅速发展的主要原因。首先,原子力显微镜(AFM)技术的样品制备简单,无需对样品进行特殊处理,因此,其破坏性较其它生物学常用技术(如电子显微镜)要小得多;第二,原子力显微镜(AFM)能在多种环境(包括空气、液体和真空)中运作,生物分子可在生理条件下直接成像,也可对活细胞进行实时动态观察;第三,原子力显微镜(AFM)能提供生物分子和生物表面的分子/亚分子分辨率的三维图像;第四,原子力显微镜(AFM)能以纳米尺度的分辨率观察局部的电荷密度和物理特性,测量分子间(如受体和配体)的相互作用力;第五,原子力显微镜(AFM)能对单个生物分子进行操纵;另外,由原子力显微镜(AFM)获得的信息还能与其它的分析技术和显微镜技术互补。原子力显微镜(AFM)还具有对标本的分子或原子进行加工的能力,例如,可搬移原子,切割染色体,在细胞膜上打孔等等。综上所述,原子级的高分辨率、观察活的生命样品和加工样品的力行为成就了原子力显微镜的三大特点。原子力显微镜(AFM)原理原子力显微镜(AFM)通常使用氮化硅作为一个灵敏的弹性微悬臂,在其尖端有一个很尖的探针用来在样品上扫描。点状物或原子之间的相互作用力通常用Lennard-Jone电位描述:U(r)=-U0[(r0/Z)12-(r0/Z)6]此处Z为原子间距,U0和r0分别为平衡状态下原子间的能量和距离。当原子间距小于r0时,原子间作用力由吸引力变为排斥力。探针与表面之间的吸引力和排斥力被用于扫描力试验。不同表面方位的探针作用力给出关于表面形态和一些其他表面特征的信息。原子力显微镜(AFM)有两种类型:接触式和非接触式,分别基于排斥作用和吸引作用。原子力显微镜(AFM)试验中,探针尖端近似为显微球,则针尖与样品表面间的作用力为:F(Z)=2πR0B/3Z3其中Z为针尖与样品之间的距离,R0为近似显微球针尖的半径,B为一个与物体介电常数有特殊关系的常量。原子力显微镜(AFM)探针安装在一个灵活的悬臂上,激光二极管发出的一束激光经悬臂反射后,打在一个分裂式光电二极管上,当探针在样品表面扫描时,由于样品表面原子结构起伏不平,悬臂也就随之起伏,于是激光束的反射也就起伏。光电二极管将其接收、放大,即可获得样品表面凹凸信息的原子结构图像。原子量级的表面形态记录是原子力显微镜(AFM)特有的性能。轻敲模式(TappingMode,TM)成像技术在用原子力显微镜(AFM)观察柔软、粘连、易碎的样品方面,TM成像术的出现是一个关键性进步。TM-AFM在空气中扫描时,探针通常以50000~500000次/秒的频率交替接触和离开表面。由于针尖接触表面造成能量损失,悬臂振荡减弱,这种振幅的减小可以用来鉴别、测量表面状态。当针尖通过表面隆起部分时,悬臂在较小空间内振荡,振荡的振幅同时变小;相反,当针尖通过凹陷处时,悬臂在较大范围振荡,振幅变大。数字反馈回路用来调整针尖-样品间距以维持恒定的振幅和作用于样品上的力。TM-AFM在液体媒质中扫描时,为了避免使整个液体细胞在悬臂振荡驱使下进入上下运动状态,必须选择一个合适的振荡频率(通常在5000~40000次/秒的范围内)。这种方法的特点是:当针尖沿X方向进行扫描时,周期性的使针尖在Z方向上撤离样品表面然后再接近,并保持每次撤离的距离相等,如果针尖撤离足够远,那麽针尖对样品的横向作用力就不会被累积,从而可减少针尖对样品的破坏作用。TM-AFM成像的优点在于,它既可以防止针尖与表面粘连和扫描过程中造成的样品破坏,又能接触表面并获得高分辨图像。而且TM-AFM成像具有广阔的线性范围,允许常规样品的重复测试。使用原子力显微镜(AFM)观察生化过程随着样品处理技术在液体中成像技术的改善,应用原子力显微镜(AFM)观察复杂的生化过程成为可能。转录过程是基因