高中几何证明.docx
一吃****福乾
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
高中几何证明.docx
高中几何证明高中几何证明高中几何证明一、已知平行四边形ABCD,过ABC三点的圆O1,分别交AD.BD于E.F、过CDF三点的圆O2交AD于G。设圆O1.O2半径分别为R,r。1.求证AC^2=AG*AD2.AD:EG=R^2:r^2连接AC、GC。利用两个圆转化角的关系,∠AGC=180-∠DGC=180-∠DFC=∠BFC=∠BAC=∠ACD于是两个三角形ACG和ADC相似。第一问由此立得。同样利用上述相似,∠GCA=∠ADC=∠ABC。于是由“弦切角等于圆周角”,说明GC与圆O1相切。于是GC^2=
高中几何证明.docx
高中几何证明高中几何证明高中几何证明一、已知平行四边形ABCD,过ABC三点的圆O1,分别交AD.BD于E.F、过CDF三点的圆O2交AD于G。设圆O1.O2半径分别为R,r。1.求证AC^2=AG*AD2.AD:EG=R^2:r^2连接AC、GC。利用两个圆转化角的关系,∠AGC=180-∠DGC=180-∠DFC=∠BFC=∠BAC=∠ACD于是两个三角形ACG和ADC相似。第一问由此立得。同样利用上述相似,∠GCA=∠ADC=∠ABC。于是由“弦切角等于圆周角”,说明GC与圆O1相切。于是GC^2=
高中几何证明定理.docx
高中几何证明定理高中几何证明定理高中几何证明定理一.直线与平面平行的(判定)1.判定定理.平面外一条直线如果平行于平面内的一条直线,那么这条直线与这个平面平行.2.应用:反证法(证明直线不平行于平面)二.平面与平面平行的(判定)1.判定定理:一个平面上两条相交直线都平行于另一个平面,那么这两个平面平行2.关键:判定两个平面是否有公共点三.直线与平面平行的(性质)1.性质:一条直线与一个平面平行,则过该直线的任一与此平面的交线与该直线平行2.应用:过这条直线做一个平面与已知平面相交,那么交线平行于这条直线四
如何理解高中几何证明.doc
如何理解高中新课程中几何证明的要求与以往高中数学课程中的立体几何内容相比,《标准》中立体几何内容的变化主要表现在几何定位的变化,几何内容处理方式的变化以及几何内容的分层设计等方面。《标准》中的立体几何定位于培养和发展学生把握图形的能力、空间想象与几何直觉的能力、逻辑推理能力等。在处理方式上,与以往点、线、面、体,从局部到整体展开几何内容的方式不同,《标准》按照整体到局部的方式展开几何内容,并突出直观感知、操作确认、思辨论证、度量计算等探索研究几何的过程。立体几何内容分层设计,在必修课程中,主要是通过直观感
高中几何证明定理.docx
高中几何证明定理高中几何证明定理高中几何证明定理一.直线与平面平行的(判定)1.判定定理.平面外一条直线如果平行于平面内的一条直线,那么这条直线与这个平面平行.2.应用:反证法(证明直线不平行于平面)二.平面与平面平行的(判定)1.判定定理:一个平面上两条相交直线都平行于另一个平面,那么这两个平面平行2.关键:判定两个平面是否有公共点三.直线与平面平行的(性质)1.性质:一条直线与一个平面平行,则过该直线的任一与此平面的交线与该直线平行2.应用:过这条直线做一个平面与已知平面相交,那么交线平行于这条直线四