预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

本发明提供一种基于多尺度空谱特征联合学习的高光谱图像分类方法,通过多尺度光谱特征提取模块和多尺度空间特征提取模块分别有效提取了不同尺度的光谱特征和空间特征,再通过光谱?空间特征融合模块进行光谱特征和空间特征的联合提取,实现了光谱?空间特征的联合学习,充分利用了高光谱图像中丰富的光谱和空间信息,提高了分类精度;同时,本发明将光谱?空间特征的提取通过三组卷积神经网络来实现,且第一组三维卷积层Ⅰ中卷积核的前两维尺寸为1×1,第二组为二维卷积层,相比于全部使用三个维度均不为1的多层三维卷积神经网络,能够在保证分类性能的前提下实现模型轻量化,加快模型获取时的训练速度和模型使用时的分类速度。