预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

§7.2紧致性与分离性公理A令,它们分别是点x和集合A的开邻域.2.推论7.2.2Hausdorff空间中的每一个紧致子集都是闭集.1.推论7.2.4每一个紧致的Haudorff空间都是正则空间.2.定理7.2.5设X是一个Hausdorff空间.如果A和B是X的两个无交的紧致子集,则它们分别有开邻域U和V使得U∩V=.空间3.定理7.2.7设X是一个正则空间.如果A是X中的一个紧致子集,U是A的一个开邻域,则存在A的一个开邻域V使得.每一个紧致的正则空间都是正规空间.因为一个既单且满的开(或闭)的连续映射即是一个同胚,所以我们有: