基于联邦机器学习的模型训练方法和装置.pdf
葫芦****io
亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
基于联邦机器学习的模型训练方法和装置.pdf
本说明书实施例提供了基于联邦机器学习的模型训练方法和装置。至少两个客户端以及至少一个云服务器参与基于联邦机器学习的模型训练,在每一轮训练中,第一客户端接收云服务器下发的全局模型;第一客户端利用本地的私有数据训练出该全局模型的梯度;第一客户端对本轮训练得到的梯度进行加密,然后将加密后的梯度发送给云服务器;第一客户端执行下一轮训练,直至全局模型收敛。本说明书实施例能够提高模型训练的安全性。
基于联邦学习的模型训练方法和联邦学习系统.pdf
公开了一种基于联邦学习的模型训练方法和联邦学习系统。所述方法应用于包括服务器与N个节点的联邦学习系统,N>1,并且包括:在模型训练的第i次操作中,执行:服务器将模型参数集合下发给M<base:Sub>i</base:Sub>个节点,其中,M<base:Sub>i</base:Sub>≤N,M<base:Sub>i</base:Sub>个节点各自使用本地训练样本执行梯度计算以获取原始梯度,并且对与所述原始梯度相关的性能维持指标和隐私保护指标进行联合优化,以求取变换梯度;以及服务器获取变换梯度并更新模型参数集
基于联邦学习的模型训练方法和联邦学习系统.pdf
公开了一种基于联邦学习的模型训练方法和联邦学习系统。所述方法应用于包括服务器与N个节点的联邦学习系统,N>1,并且包括:在模型训练的第i次操作中,执行:服务器将模型参数集合下发给M<base:Sub>i</base:Sub>个节点,其中,M<base:Sub>i</base:Sub>≤N,M<base:Sub>i</base:Sub>个节点各自使用本地训练样本执行梯度计算以获取原始梯度,并且对与所述原始梯度相关的性能维持指标和隐私保护指标进行联合优化,以求取变换梯度;以及服务器获取变换梯度并更新模型参数集
基于联邦学习的模型训练方法、装置和电子设备.pdf
本说明书实施例公开了一种基于联邦学习的模型训练方法、装置和电子设备。所述方法包括:利用以下步骤进行迭代处理,直至满足迭代结束条件:接收多个参与方上传的第一模型参数信息及其对应的模型性能;以接收的第一模型参数信息为初始种群中的个体,以接收的模型性能为初始种群中个体的适应度,根据适应度,对所述初始种群中的个体进行遗传操作,得到优化种群;其中,所述优化种群中的个体用于表示第二模型参数信息;向多个参与方发送第二模型参数信息。本说明书实施例可以提高模型训练效率。
机器学习模型训练方法和装置.pdf
本发明涉及一种机器学习模型训练方法和装置,包括:获取在本轮清洗脏样本数据前已有纯净样本数据;根据已有纯净样本数据和机器学习模型的当前模型参数,确定该模型的损失函数的第一二阶平均梯度;根据本轮从脏样本数据中取部分脏样本数据清洗后得到的纯净样本数据和当前模型参数,确定损失函数的第二二阶平均梯度;根据第一二阶平均梯度和第二二阶平均梯度,获得损失函数的整体二阶平均梯度;根据整体二阶平均梯度调整当前模型参数;若调整后的模型参数不满足训练结束条件,将下一轮作为本轮,返回获取在本轮清洗脏样本数据前已有纯净样本数据的步骤