预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共16页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

公开了一种基于联邦学习的模型训练方法和联邦学习系统。所述方法应用于包括服务器与N个节点的联邦学习系统,N>1,并且包括:在模型训练的第i次操作中,执行:服务器将模型参数集合下发给Mi个节点,其中,Mi≤N,Mi个节点各自使用本地训练样本执行梯度计算以获取原始梯度,并且对与所述原始梯度相关的性能维持指标和隐私保护指标进行联合优化,以求取变换梯度;以及服务器获取变换梯度并更新模型参数集合。性能维持指标能够度量模型性能变化,而隐私保护指标则能够度量隐私泄露风险。通过联合优化这两个指标,本发明可以获取数据隐私被稳妥保护且模型性能劣化最小的扰动点。本发明还可以通过改进的初始化策略来加速联合优化的收敛。