一种基于自适应加权容积粒子滤波的锂电池SOC估计方法.pdf
雨巷****珺琦
亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于自适应加权容积粒子滤波的锂电池SOC估计方法.pdf
本发明提供了一种基于自适应加权容积粒子滤波的锂电池SOC估计方法,该方法首先根据车载传感器采集到的电池电流和电压数据,其次利用带遗忘因子的递归最小二乘算法对电池模型参数进行辨识,最后利用自适应加权容积粒子滤波算法对SOC进行估计。本发明的自适应加权容积粒子滤波的锂电池SOC估计方法,融合了PF算法和自适应加权容积卡尔曼滤波算法(AWCKF)对SOC进行估计。相对于传统的PF算法而言,该算法可有效解决粒子滤波算法中粒子退化问题,有效提高算法的估计精度,能够保证SOC估计精度在1%之内。同时,该算法在SOC估
一种基于自适应容积粒子滤波的车辆状态估计方法.pdf
本发明公开了一种基于自适应容积粒子滤波(ACPF)的车辆状态估计方法,包括:首先基于非稳态动态轮胎模型,构建高维度非线性八自由度车辆动力学模型;其次利用自适应容积卡尔曼滤波算法更新基本粒子滤波算法的重要性密度函数,以此完成自适应容积粒子滤波算法设计;利用车载传感器信息,运用ACPF算法实现对车辆的侧倾角、质心侧偏角等关键状态变量高精度在线观测。最后搭建Simulink‑Carsim联合仿真平台进行了算法的验证,结果表明该算法状态估计精度高于传统无迹粒子滤波(UPF)算法,且算法运算效率高于UPF算法。
基于自适应模糊卡尔曼滤波的锂电池SOC估计.docx
基于自适应模糊卡尔曼滤波的锂电池SOC估计一、介绍随着新能源汽车的兴起,锂电池作为其核心动力源之一在现代能源领域中发挥着越来越重要的作用。因此,对于锂电池的状态估计(俗称SOC)变得越来越重要。SOC是指电池的剩余电量,是任何电动车辆动力电池管理系统的基础和关键环节之一,对电动车辆的续航里程、性能、安全性和经济性等有着至关重要的影响。精确的SOC估计可以大大提高新能源汽车的能源利用率和运行安全性。目前,SOC估计方法的研究主要有基于开环方法和基于闭环方法两种,其中基于闭环方法的估计精度更高。而自适应模糊卡
基于自适应无迹卡尔曼滤波的锂电池SOC估计.docx
基于自适应无迹卡尔曼滤波的锂电池SOC估计随着新能源汽车的快速发展,锂电池的性能和寿命成为了关注焦点。电池的状态为安全和性能提供了基础,其中状态之一为电池的剩余容量(SOC),用于衡量电池剩余能量的百分比。因此,SOC估计是电池管理的一个重要问题,越精确的SOC估计能够提高电池的可靠性和性能。基于自适应无迹卡尔曼滤波的锂电池SOC估计是当前估计SOC精度较高的方法之一。本文将讨论基于自适应无迹卡尔曼滤波的锂电池SOC估计的理论原理、该方法的实现细节以及其优缺点。一、理论原理锂电池SOC估计的数学模型主要为
基于自适应无迹卡尔曼滤波的锂电池SOC估计.docx
基于自适应无迹卡尔曼滤波的锂电池SOC估计标题:基于自适应无迹卡尔曼滤波的锂电池SOC估计摘要:随着环境保护意识的增强以及需求量的日益增长,锂电池作为一种高能量密度、环境友好的储能装置被广泛应用于汽车、电动工具等领域。准确地估计锂电池的剩余能量,即状态-of-charge(SOC),是保证锂电池系统可靠运行和延长其寿命的关键。本文提出了一种基于自适应无迹卡尔曼滤波的锂电池SOC估计方法,该方法结合了无迹卡尔曼滤波的优势和自适应技术,提高了SOC估计的精度和稳定性。1.引言锂电池SOC估计是电池管理系统(B