预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2017年普通高等学校招生全国统一考试模拟试题理科数学(Ⅱ)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则集合=()A.B.C.D.2.设复数满足,则=()A.B.C.D.3.若,,则的值为()A.B.C.D.4.已知直角坐标原点为椭圆的中心,,为左、右焦点,在区间任取一个数,则事件“以为离心率的椭圆与圆:没有交点”的概率为()A.B.C.D.5.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过的正角.已知双曲线:,当其离心率时,对应双曲线的渐近线的夹角的取值范围为()A.B.C.D.6.某几何体的三视图如图所示,若该几何体的体积为,则它的表面积是()A.B.C.D.7.函数在区间的图象大致为()A.B.C.D.8.二项式的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则的值为()A.4B.8C.12D.169.执行下图的程序框图,若输入的,,,则输出的的值为()A.81B.C.D.10.已知数列,,且,,则的值为()A.B.C.D.11.已知函数的图象如图所示,令,则下列关于函数的说法中不正确的是()A.函数图象的对称轴方程为B.函数的最大值为C.函数的图象上存在点,使得在点处的切线与直线平行D.方程的两个不同的解分别为,,则最小值为12.已知函数,若存在三个零点,则的取值范围是()A.B.C.D.第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分13.向量,,若向量,共线,且,则的值为.14.设点是椭圆上的点,以点为圆心的圆与轴相切于椭圆的焦点,圆与轴相交于不同的两点、,若为锐角三角形,则椭圆的离心率的取值范围为.15.设,满足约束条件则的取值范围为.16.在平面五边形中,已知,,,,,,当五边形的面积时,则的取值范围为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列的前项和为,,.(1)求数列的通项公式;(2)记求的前项和.18.如图所示的几何体中,底面为菱形,,,与相交于点,四边形为直角梯形,,,,平面底面.(1)证明:平面平面;(2)求二面角的余弦值.19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为、、、、五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为的人数;(2)若等级、、、、分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?(3)为了解心理健康状态稳定学生的特点,现从、两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为级的个数的分布列与数学期望.20.已知椭圆:的离心率为,且过点,动直线:交椭圆于不同的两点,,且(为坐标原点)(1)求椭圆的方程.(2)讨论是否为定值?若为定值,求出该定值,若不是请说明理由.21.设函数.(1)试讨论函数的单调性;(2)设,记,当时,若方程有两个不相等的实根,,证明.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.选修4-4:坐标系与参数方程在直角坐标系中,曲线:(为参数,),在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线:.(1)试将曲线与化为直角坐标系中的普通方程,并指出两曲线有公共点时的取值范围;(2)当时,两曲线相交于,两点,求.23.选修4-5:不等式选讲.已知函数.(1)在下面给出的直角坐标系中作出函数的图象,并由图象找出满足不等式的解集;(2)若函数的最小值记为,设,且有,试证明:.参考答案及解析理科数学(Ⅱ)一、选择题1-5:BCAAD6-10:AABCC11、12:CD二、填空题13.-814.15.16.三、解答题17.解:(1)当时,由及,得,即,解得.又由,①可知,②②-①得,即.且时,适合上式,因此数列是以为首项,为公比的等比数列,故(2)由(1)及,可知,所以,故.18.解:(1)因为底面为菱形,所以,又平面底面,平面平面,因此平面,从而.又,所以平面,由,,,可知,,,,从而,故.又,所以平面.又平面,所以平面平面.(2)取中点,由题可知,所以平面,又在菱形中,,所以分别以,,的方向为,,轴正方向建立空间直角坐标系(如图示),则,,,,,所以,,.由(1)可知平面,所以平面的法向量可取为.设平面的法向量为