预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2016-2017学年辽宁省盘锦市辽河油田二中高二(下)期中数学试卷(理科)一、选择题(每道小题5分,满分60分)1.(2+x)(1﹣2x)5展开式中,x2项的系数为()A.30B.70C.90D.﹣1502.某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是()A.=﹣10x+200B.=10x+200C.=﹣10x﹣200D.=10x﹣2003.某校为了研究“学生的性别”和“对待某一活动的态度”是否有关,运用2×2列联表进行独立性检验,经计算k=7.069,则认为“学生性别与支持活动有关系”的犯错误的概率不超过()A.0.1%B.1%C.99%D.99.9%4.甲、乙两人计划A、B、C三个景点中各选择两个游玩,则两人所选景点不全相同的选法共有()A.3种B.6种C.9种D.12种5.已知随机变量X~N(6,1),且P(5<X<7)=a,P(4<X<8)=b,则P(4<X<7)=()A.B.C.D.6.已知二项分布ξ~B(4,),则该分布列的方差Dξ值为()A.4B.3C.1D.27.有10件产品,其中4件是次品,其余都是合格品,现不放回的从中依次抽2件,则在第一次抽到次品的条件下,第二次抽到次品的概率是()A.B.C.D.8.(+)n展开式中只有第六项的二项式系数最大,则展开式中的常数项是()A.180B.90C.45D.3609.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是的事件为()A.恰有1只是坏的B.4只全是好的C.恰有2只是好的D.至多有2只是坏的10.某车间加工零件的数量x与加工时间y的统计数据如下表:零件个数x(个)112029加工时间y(分钟)203139现已求得上表数据的回归方程=x+中的的值为0.9,则据此回归模型可以预测,加工90个零件所需要的加工时间约为()A.93分钟B.94分钟C.95分钟D.96分钟11.5位同学站成一排照相,其中甲与乙必须相邻,且甲不能站在两端的排法总数是()A.40B.36C.32D.2412.在二项式的展开式中只有第五项的二项式系数最大,把展开式中所有的项重新排成一列,则有理项都互不相邻的概率为()A.B.C.D.二、填空题(每道小题5分,满分20)13.已知随机变量X~B(5,0.3),Y=2X﹣1,则E(Y)=.14.甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有种.15.从5名男公务员和4名女公务员中选出3人,分别派到西部的三个不同地区,要求3人中既有男公务员又有女公务员,则不同的选派方法种数是.16.某人有5把钥匙,其中2把能打开门.现随机取钥匙试着开门,不能开门就扔掉.则恰好在第3次才能开门的概率为.三、简答题(满分70分)17.已知n∈N*,在(x+2)n的展开式中,第二项系数是第三项系数的.(1)求n的值;(2)求展开式中二项式系数最大的项;(3)若(x+2)n=a0+a1(x+1)+a2(x+1)2+…+an(x+1)n,求a0+a1+…+an的值.18.甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为,乙每次投中的概率为,每人分别进行三次投篮.(Ⅰ)记甲投中的次数为ξ,求ξ的分布列及数学期望Eξ;(Ⅱ)求乙至多投中2次的概率;(Ⅲ)求乙恰好比甲多投进2次的概率.19.某社区举办防控甲型H7N9流感知识有奖问答比赛,甲、乙、丙三人同时回答一道卫生知识题,三人回答正确与错误互不影响.已知甲回答这题正确的概率是,甲、丙两人都回答错误的概率是,乙、丙两人都回答正确的概率是.(Ⅰ)求乙、丙两人各自回答这道题正确的概率;(Ⅱ)用ξ表示回答该题正确的人数,求ξ的分布列和数学期望Eξ.20.乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(1)求乙以4比1获胜的概率;(2)求甲获胜且比赛局数多于5局的概率.21.为调查了解某省属师范大学师范类毕业生参加工作后,从事的工作与教育是否有关的情况,该校随机调查了该校80位性别不同的2016年师范类毕业大学生,得到具体数据如表:与教育有关与教育无关合计男301040女35540合计651580(1)能否在犯错误的概率不超过5%的前提下,认为“师范类毕业生从事与教育有关的工作与性别有关”?(2)求这80位师范类毕业生从事与教育有关工作的频率;(3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为X,求X的数学期望E(X).参考公式:k2=(n=a+b+c+d).附表:P(K2≥k0)0.500.400.250.150.100.050.0250.010k00.4550.70