预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共15页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

郑州市2021—2022学年上期期末考试高二数学(文)试题卷第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设a,b,c非零实数,且,则().A.B.C.D.【答案】C【解析】【分析】对于A、B、D:取特殊值否定结论;对于C:利用作差法证明.【详解】对于A:取符合已知条件,但是不成立.故A错误;对于B:取符合已知条件,但是,所以不成立.故B错误;对于C:因为,所以.故C正确;对于D:取符合已知条件,但是,所以不成立.故D错误;故选:C.2.在等差数列中,,则().A.9B.6C.3D.1【答案】A【解析】【分析】直接由等差中项得到结果.详解】由得.故选:A.3.椭圆的长轴长是().A.3B.6C.9D.4【答案】B【解析】【分析】根据椭圆方程有,即可确定长轴长.【详解】由椭圆方程知:,故长轴长为6.故选:B4.中,三边长之比为,则为()A.锐角三角形B.直角三角形C.钝角三角形D.不存在这样的三角形【答案】C【解析】【分析】利用余弦定理可求得最大角的余弦值小于零,由此可知最大角为钝角.【详解】设三边分别为,,,中的最大角为,,为钝角,为钝角三角形.故选:C.5.若函数的导函数在区间上是减函数,则函数在区间上的图象可能是().A.B.C.D.【答案】A【解析】【分析】根据导数概念和几何意义判断【详解】由题意得,图象上某点处的切线斜率随增大而减小,满足要求的只有A故选:A6.设变量x,y满足约束条件则目标函数的最小值为().A.3B.1C.0D.﹣1【答案】C【解析】【分析】线性规划问题,作出可行域后,根据几何意义求解【详解】作出可行域如图所示,,数形结合知过时取最小值故选:C7.2021年11月,郑州二七罢工纪念塔入选全国职工爱国主义教育基地名单.某数学建模小组为测量塔的高度,获得了以下数据:甲同学在二七广场A地测得纪念塔顶D的仰角为45°,乙同学在二七广场B地测得纪念塔顶D的仰角为30°,塔底为C,(A,B,C在同一水平面上,平面ABC),测得,,则纪念塔的高CD为().A.40mB.63mC.mD.m【答案】B【解析】【分析】设,先表示出,再利用余弦定理即可求解.【详解】如图所示,,设塔高为,因为平面ABC,所以,所以,又,即,解得.故选:B.8.已知各项都为正数的等比数列,其公比为q,前n项和为,满足,且是与的等差中项,则下列选项正确的是().A.B.CD.【答案】D【解析】【分析】根据题意求得,即可判断AB,再根据等比数列的通项公式即可判断C;再根据等比数列前项和公式即可判断D.【详解】解:因为各项都为正数的等比数列,,所以,又因是与的等差中项,所以,即,解得或(舍去),故B错误;所以,故A错误;所以,故C错误;所以,故D正确.故选:D.9.设的内角的对边分别为的面积,则()A.B.C.D.【答案】A【解析】【分析】利用三角形面积公式、二倍角正弦公式有,再由三角形内角的性质及余弦定理化简求即可.【详解】由,∴,在中,,∴,解得.故选:A.10.已知命题,;命题,,那么下列命题为假命题的是().A.B.C.D.【答案】B【解析】【分析】由题设命题的描述判断、的真假,再判断其复合命题的真假即可.【详解】对于命题,仅当时,故为假命题;对于命题,由且开口向上,故为真命题;所以为真命题,为假命题,综上,为真,为假,为真,为真.故选:B11.下列说法错误的是().A.命题“,”的否定是“,”B.若“”是“或”的充分不必要条件,则实数m的最大值为2021C.“”是“函数在内有零点”的必要不充分条件D.已知,且,则的最小值为9【答案】C【解析】【分析】对于A:用存在量词否定全称命题,直接判断;对于B:根据充分不必要条件直接判断;对于C:判断出“”是“函数在内有零点”的充分不必要条件,即可判断;对于D:利用基本不等式求最值.【详解】对于A:用存在量词否定全称命题,所以命题“,”的否定是“,”.故A正确;对于B:若“”是“或”的充分不必要条件,所以,即实数m的最大值为2021.故B正确;对于C:“函数在内有零点”,则,解得:或,所以“”是“函数在内有零点”的充分不必要条件.故C错误;对于D:已知,且,所以(当且仅当,即时取等号)故D正确.故选:C12.已知函数在上是增函数,则实数的取值范围是()A.B.C.D.【答案】A【解析】【分析】由题意可知,对任意的恒成立,可得出对任意的恒成立,利用基本不等式可求得实数的取值范围.【详解】因为,则,由题意可知,对任意的恒成立,所以,对任意的恒成立,由基本不等式可得,当且仅当时,等号成立,所以,.故选:A.第Ⅱ卷非选择题(共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.函数的图象在点处的切线方程为