预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共42页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

绝对值教案绝对值教案作为一名人民教师,时常会需要准备好教案,借助教案可以更好地组织教学活动。来参考自己需要的教案吧!以下是小编精心整理的绝对值教案,欢迎大家分享。绝对值教案1【学习目标】1.借助数轴,初步理解绝对值和相反数的概念,能求一个数的绝对值和相反数,2.会利用绝对值比较两负数的大小;学习数形结合的数学方法和分类讨论的思想。3.会与人合作,并能与他人交流思想的过程和结果;【学习方法】自主探究与合作交流相结合。【学习重难点】重点:会求一个数的绝对值和相反数,会利用绝对值比较两负数的大小。难点:对绝对值和相反数的代数意义、几何意义的理解。【学习过程】模块一预习反馈一、学习准备1.数轴:规定了xxxxx、xxxxxxx、xxxxxxxxxx的一条直线叫做xxxxxxxx.2.数轴上两个点表示的数,右边的总比左边的;正数大于,负数小于,正数大于一切。3.请同学们阅读教材p30—p32,预习过程中请注意:⑴不懂的地方要用红笔标记符号;⑵完成你力所能及的习题和课后作业。二、精读教材4.相反数的意义+3与—3,—5与+5,—1.5与1.5这三对数有什么共同点?还能列举出这样的数吗?归纳:如果两个数只有xxxxxx不同,那么称其中一个数为另一个数的xxxxxxxx,也称这两个数xxxxxxxxxxxx.特别地,0的相反数是xxxx。如,+3的'相反数是—3,也可以说+3与—3互为相反数。相反数是成对出现的,不能单独存在。《2.3绝对值》课时练习一、选择题(共10题)1.有理数的绝对值一定是()A.正数B.负数C.零或正数D.零或负数答案:C解析:解答:根据绝对值的定义可知:正数的绝对值是它本身,负数的绝对值是正数,零的绝对值是零;所以答案选择C选项分析:考查有理数的绝对值,注意正数的绝对值是它本身,负数的绝对值是正数,零的绝对值是零2.绝对值等于它本身的数有()A.0个B.1个C.2个D.无数个答案:D解析:解答:根据绝对值得定义可知正数和零的绝对值是它本身,所以答案选择D选项分析:考查绝对值这一知识点.3.相反数等于-5的数是()A.5B.-5C.5或-5D.不能确定答案:A解析:解答:根据相反数的定义可知,互为相反数的两个数只有符号不同,所以答案选择A选项分析:考查相反数的基本概念。2.3绝对值》同步练习10.如果|a|=-a,下列成立的是()A.-a一定是非负数B.-a一定是负数C.|a|一定是正数D.|a|不能是011.下列说法:①一个数的绝对值一定是正数;②-a一定是一个负数;③没有绝对值为-3的数;④若|a|=a,则a是一个正数;⑤-20xx的绝对值是20xx.其中正确的有xxxxxxxx.(填序号)12.若绝对值相等的两个数在数轴上的对应点的距离为6,则这两个数为()A.+6和-6B.-3和+3C.-3和+6D.-6和+3绝对值教案2教学目标1.了解绝对值的概念,会求有理数的绝对值;2.会利用绝对值比较两个负数的大小;3.在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力.教学建议一、重点、难点分析绝对值概念既是本节的教学重点又是教学难点。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有。教材上绝对值的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。二、知识结构绝对值的定义绝对值的表示方法用绝对值比较有理数的大小三、教法建议用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的.初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即在教学中,只能突出一种定义,否则容易引起混乱.可以把利用数轴给出的定义作为绝对值的一种直观解释.此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数.“非负数”的概念视学生的情况,逐步渗透,逐步提出.四、有关绝对值的一些内容1.绝对值的代数定义一个正数的绝对值是它本身;一个负数的.绝对值是它的相反数;零的绝对值是零.2.绝对值的几何定义在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值.3.绝对值的主要性质(2)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零.(4)两个相反数的绝对值相等.五、运用绝对值比较有理数的大小1.两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负