预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共16页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

16陕西省渭南市富平县富平中学2020届高三数学上学期第一次摸底考试试题文(含解析)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A.B.C.D.【答案】A【解析】【分析】直接计算即可.【详解】由已知可得,.故选:A.【点睛】本题主要考查集合的交集运算,属基础题.2.()A.B.C.D.【答案】A【解析】由复数的运算得到;故答案为A.3.已知向量,,则()A.-1B.-2C.1D.0【答案】C【解析】【分析】直接根据平面向量的数量积的坐标运算即可求解.【详解】由已知可得,.故选:C.【点睛】本题主要考查平面向量的数量积的坐标运算,属基础题.4.名学生在一次数学考试中的成绩分别为如,,,…,,要研究这名学生成绩的平均波动情况,则最能说明问题的是()A.频率B.平均数C.独立性检验D.方差【答案】D【解析】分析:直接根据频率、平均数、独立性检验、方差的基本定义判断即可.详解:因为频率表示可能性大小,错;平均数表示平均水平的高低,错;独立性检验主要指两个变量相关的可能性大小,错;方差表示分散与集中程度以及波动性的大小,对,故选D.点睛:本题主要考查频率、平均数、独立性检验、方差的基本定义,属于简单题.5.在中,角,,的对边分别为,,,若,则A.B.C.1D.【答案】B【解析】【分析】由已知利用正弦定理化简即可求解.【详解】解:,由正弦定理可得:,解得.故选.【点睛】本题主要考查了正弦定理在解三角形中的应用,属于基础题.6.对于一个声强为为(单位:)的声波,其声强级(单位:)可由如下公式计算:(其中是能引起听觉的最弱声强),设声强为时的声强级为70,声强为时的声强级为60,则是的()倍A.10B.C.D.【答案】A【解析】【分析】根据声强级与声强之间的关系式,将两个声强级作差,结合对数的运算律可得出的值,可得出答案.【详解】由题意可得,即,两式相减得,所以,,因此,是的倍,故选A.【点睛】本题考查对数的运算律,考查对数在实际问题的应用,熟练应用对数的运算性质是解本题的关键,其次就是要弄清题目的意思,考查理解能力与运算能力,属于中等题.7.已知,则下列不等式不成立的是A.B.C.D.【答案】B【解析】【分析】根据指数函数、对数函数的单调性,以及不等式的性质,对选项逐一分析,由此得出不等式不成立的选项.【详解】依题意,由于为定义域上减函数,故,故A选项不等式成立.由于为定义域上的增函数,故,则,所以B选项不等式不成立,D选项不等式成立.由于,故,所以C选项不等式成立.综上所述,本小题选B.【点睛】本小题主要考查指数函数和对数函数的单调性,考查不等式的性质,属于基础题.8.若一架飞机向目标投弹,击毁目标的概率为,目标未受损的概率为,则目标受损但未被击毁的概率为()A.B.C.D.【答案】D【解析】【分析】由已知条件利用对立事件概率计算公式直接求解.【详解】由于一架飞机向目标投弹,击毁目标的概率为,目标未受损的概率为;所以目标受损的概率为:;目标受损分为击毁和未被击毁,它们是对立事件;所以目标受损的概率目标受损被击毁的概率目标受损未被击毁的概率;故目标受损但未被击毁的概率目标受损的概率目标受损被击毁的概率,即目标受损但未被击毁的概率;故答案选D【点睛】本题考查概率的求法,注意对立事件概率计算公式的合理运用,属于基础题.9.已知,若命题:;命题:,,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】【分析】对命题进行化简得,再根据集合间的关系判断充分条件与必要条件.【详解】当命题为真时:,因为集合是集合的真子集,所以是的充分不必要条件.故选:A.【点睛】本题考查全称命题、简易逻辑中的充分条件与必要条件,考查逻辑推理能力,求解时要注意利用集合间的真子集关系进行求解.10.已知函数,则曲线在点处的切线方程是()A.B.C.D.【答案】B【解析】【分析】由导数的几何意义直接计算即可.【详解】因为,所以,此时,又,所以切点为,切线的斜率为,切线的方程为:.故选:B.【点睛】本题主要考查导数的几何意义,属常规考题.11.已知和是平面内两条不同的直线,是-个平面,则下列命题正确的是()A.若,,则B.若,,则C.若,则D.若,与所成角相等,则【答案】C【解析】【分析】对A,两直线可能相交;对B,两平面可能相交;对D,两直线也可能相交.【详解】如图,在长方体中,对A,平面为面,平面为平面,直线为直线,直线为直线,显然两直线相交,故A错误;对B,平面为平面,平面为面,,分别为棱的中点,直线为直线,直线为直线,均与平面平行,但两平面相交,故B错误;对C,由面面垂直的判定定理可得C正确;对D,取的中点,显然与所成