预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

蒲城县2022~2023学年度第一学期期中质量检测试题高一数学注意事项:1.本试题,满分150分,时间120分钟.2.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.3.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,监考员将答题卡按顺序收回,装袋整理;试题不回收.第Ⅰ卷(选择题共60分)一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合,,则()A.B.C.D.【答案】B【解析】【分析】对集合和进行交集运算即可求解.【详解】因为,,所以故选:B2.若函数的图象恒过定点P,则P点的坐标是()A.B.C.D.【答案】B【解析】【分析】根据指数函数的图象恒过定点,即可求出P点的坐标.【详解】函数当时,.所以函数的图象恒过定点.故选:B【点睛】本题考查了指数函数的图象恒过定点的应用问题,属于基础题.3.命题,.则为()A.,B.,C.,D.,【答案】A【解析】【分析】直接根据特称命题的否定是全称命题得到答案.【详解】命题,,则为,.故选:A4.的化简结果为()A.2B.3C.4D.6【答案】B【解析】【分析】先将根式化为分数指数幂,再根据指数幂的运算性质计算即可.【详解】解:.故选:B.5.已知为偶函数,则实数()A.1B.-1C.0D.【答案】B【解析】【分析】根据“奇函数×奇函数”为“偶函数”即可判断为奇函数,根据奇函数的性质即可求解k的值.【详解】因为为偶函数,为奇函数,故为奇函数,,.经检验成立故选:B.6.已知,,,,则a,b,c的大小关系正确的为()A.c>a>bB.b>a>cC.b>c>aD.a>b>c【答案】B【解析】【分析】由题意可得,结合,的单调性可判断.【详解】由题意,故,由指数函数的单调性,单调递减,故,由幂函数的单调性,在单调递增,故,综上:.故选:B7.“”是“对任意的正数,恒成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】【分析】对任意的正数,恒成立,只要即可,利用基本不等式求出,从而可求得参数的范围,再根据充分条件和必要条件的定义即可得解.【详解】解:对任意的正数,恒成立,只要即可,,当且仅当,即时,取等号,所以,则,解得,所以“”是“对任意的正数,恒成立”的充分不必要条件.故选:A.8.牛奶保鲜时间因储藏温度的不同而不同.假定保鲜时间与储藏温度的关系为(、为常量).若牛奶在0的冰箱中,保鲜时间约是100h,在5的冰箱中,保鲜时间约是80h,那么在10中的保鲜时间约是()A.49hB.56hC.64hD.76h【答案】C【解析】【分析】由题意,建立方程组,结合指数式的运算性质,利用整体思想,可得答案.【详解】由题意,可得,解得,则.故选:C.二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.下列各图中,可能是函数图象的是()A.B.C.D.【答案】ACD【解析】【分析】根据函数的定义以及函数的图象,逐个分析,一个不能对应两个值,故B错误,其他选项正确.【详解】B选项,当时,有2个值与之对应,不符合函数定义,故B错误,其余选项根据函数的定义与函数图象的关系均可能是函数图象.故选:ACD.10.已知实数a,b,c,若,则下列不等式一定成立的是()A.B.C.D.【答案】ACD【解析】【分析】易得,且,再根据不等式性质逐一判断即可.【详解】解:因为,则,且,所以,,故A,C正确;当时,,故B错误;因为,所以,所以,故D正确.故选:ACD.11.已知关于的不等式,其中,则该不等式的解集可能是()A.B.C.D.【答案】AB【解析】【分析】考虑和两种情况,不等式变形为,根据根的大小关系得到,,三种情况,解不等式对比选项即可.【详解】当时,不等式,即,,A满足;当时,,即,当时,;当时,不等式无解;当时,,B满足.故选:AB12.已知一元二次方程有且只有一个实数根,则下列说法正确的有()A.B.若的解集为,则C.D.若的解集为且,则【答案】BC【解析】【分析】根据题意得到,且,计算得到A错误,根据韦达定理得到B正确,根据均值不等式得到C正确,利用韦达定理化简得到,D错误,得到答案.【详解】有且只有一个实数根,则,即,且.,故,A错误;若的解集为,则,B正确;,当,即时等号成立,C正确;若的解集为且,则,,,故,D错误.故选:BC第Ⅱ卷(非选择题共90分)三、填空题(本题共4小题,每小题5分,共20分)13.函数的定义域是___________【答案】【解