预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共83页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2.2.1条件概率事件概率加法公式:三张奖券中只有一张能中奖,现分别由3名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两位小?一般地,我们用W来表示所有基本事件的集合,叫做基本事件空间(或样本空间)如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率又是多少?P(B)以试验下为条件,样本空间是一般地,设A,B为两个事件,且P(A)>0,则(通常适用古典概率模型)一般地,设A,B为两个事件,且P(A)>0,称2.条件概率计算公式:反思3.概率P(B|A)与P(AB)的区别与联系例1:在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,求:(1)第一次抽取到理科题的概率;(2)第一次和第二次都抽取到理科题的概率;例1、在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,求:(1)第一次抽取到理科题的概率;(2)第一次和第二次都抽取到理科题的概率;例1:在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,求:(1)第一次抽取到理科题的概率;(2)第一次和第二次都抽取到理科题的概率;法一:由(1)(2)可得,在第一次抽到理科题的条件下,第二次抽到理科题的概率为例2一张储蓄卡的密码共有6位数字,每位数字都可从0—9中任选一个。某人在银行自动取款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率。练习:设100件产品中有70件一等品,25件二等品,规定一、二等品为合格品.从中任取1件,求(1)取得一等品的概率;(2)已知取得的是合格品,求它是一等品的概率.反思在某次外交谈判中,中外双方都为了自身的利益而互不相让,这时对方有个外交官提议以抛掷一颗骰子决定,若已知出现点数不超过3的条件下再出现点数为奇数则按对方的决议处理,否则按中方的决议处理,假如你在现场,你会如何抉择?例2考虑恰有两个小孩的家庭.(1)若已知(2)若已知(假定生男生女为等可能)在某次外交谈判中,中外双方都为了自身的利益而互不相让,这时对方有个外交官提议以抛掷一颗骰子决定,若已知出现点数不超过3的条件下再出现点数为奇数则按对方的决议处理,否则按中方的决议处理,假如你在现场,你会如何抉择?探究:引例:掷红、蓝两颗骰子,设事件A=“蓝色骰子的点数为3或6”事件B=“两颗骰子点数之和大于8”求(1)P(A),P(B),P(AB)(2)在“事件A已发生”的附加条件下事件B发生的概率?(3)比较(2)中结果与P(AB)的大小及三者概率之间关系1.条件概率对任意事件A和事件B,在已知事件A发生的条件下事件B发生的条件概率”,叫做条件概率。记作P(B|A).3.概率P(B|A)与P(AB)的区别与联系例1在5道题中有3道理科题和2道文科题,如果不放回的依次抽取2道题(1)第一次抽到理科题的概率(2)第一次与第二次都抽到理科题的概率(3)第一次抽到理科题的条件下,第二次抽到理科题的概率.例1在5道题中有3道理科题和2道文科题,如果不放回的依次抽取2道题(1)第一次抽到理科题的概率(2)第一次与第二次都抽到理科题的概率(3)第一次抽到理科题的条件下,第二次抽到理科题的概率.练习、1、5个乒乓球,其中3个新的,2个旧的,每次取一个,不放回的取两次,求:(1)第一次取到新球的概率;(2)第二次取到新球的概率;(3)在第一次取到新球的条件下第二次取到新球的概率。条件概率计算中注意的问题例2一张储蓄卡的密码共有6位数字,每位数字都可从0—9中任选一个。某人在银行自动取款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率。例3甲、乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问:(1)乙地为雨天时,甲地为雨天的概率为多少?(2)甲地为雨天时,乙地也为雨天的概率为多少?练一练3.设100件产品中有70件一等品,25件二等品,规定一、二等品为合格品.从中任取1件,求(1)取得一等品的概率;(2)已知取得的是合格品,求它是一等品的概率.4、一批产品中有4%的次品,而合格品中一等品占45%.从这批产品中任取一件,求该产品是一等品的概率.解6、全年级100名学生中,有男生(以事件A表示)80人,女生20人;来自北京的(以事件B表示)有20人,其中男生12人,女生8人;免修英语的(以事件C表示)40人中,有32名男生,8名女生。求7、甲,乙,丙3人参加面试抽签,每人的试题通过不放回抽签的方式确定。假设被抽的10个试题签中有4个是难题签,按甲先,乙次,丙最后的次序抽