预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

-10-椭圆课时作业1.若椭圆C:eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)的短轴长等于焦距,则椭圆的离心率为()A.eq\f(1,2)B.eq\f(\r(3),3)C.eq\f(\r(2),2)D.eq\f(\r(2),4)答案C解析因为椭圆的短轴长等于焦距,所以b=c,所以a2=b2+c2=2c2,所以e=eq\f(c,a)=eq\f(\r(2),2),故选C.2.已知椭圆eq\f(x2,10-m)+eq\f(y2,m-2)=1,长轴在y轴上,若焦距为4,则m等于()A.4B.5C.7D.8答案D解析椭圆焦点在y轴上,∴a2=m-2,b2=10-m.又c=2,∴m-2-(10-m)=c2=4.∴m=8.3.(2019·杭州模拟)已知椭圆C:eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)的左、右焦点为F1,F2,离心率为eq\f(\r(3),3),过F2的直线l交C于A,B两点.若△AF1B的周长为4eq\r(3),则C的方程为()A.eq\f(x2,3)+eq\f(y2,2)=1B.eq\f(x2,3)+y2=1C.eq\f(x2,12)+eq\f(y2,8)=1D.eq\f(x2,12)+eq\f(y2,4)=1答案A解析由题意及椭圆的定义知4a=4eq\r(3),则a=eq\r(3),又eq\f(c,a)=eq\f(c,\r(3))=eq\f(\r(3),3),∴c=1,∴b2=2,∴C的方程为eq\f(x2,3)+eq\f(y2,2)=1.选A.4.椭圆eq\f(x2,25)+eq\f(y2,9)=1上一点M到焦点F1的距离为2,N是MF1的中点,则|ON|等于()A.2B.4C.8D.eq\f(3,2)答案B解析|ON|=eq\f(1,2)|MF2|=eq\f(1,2)×(2a-|MF1|)=eq\f(1,2)×(10-2)=4,故选B.5.(2019·河南豫北联考)已知点Peq\b\lc\(\rc\)(\a\vs4\al\co1(1,\f(\r(2),2)))是椭圆eq\f(x2,a2)+y2=1(a>1)上的点,A,B是椭圆的左、右顶点,则△PAB的面积为()A.2B.eq\f(\r(2),4)C.eq\f(1,2)D.1答案D解析由题可得eq\f(1,a2)+eq\f(1,2)=1,∴a2=2,解得a=eq\r(2)(负值舍去),则S△PAB=eq\f(1,2)×2a×eq\f(\r(2),2)=1,故选D.6.(2019·吉林长春模拟)椭圆eq\f(x2,2)+y2=1的两个焦点分别是F1,F2,点P是椭圆上任意一点,则·的取值范围是()A.[-1,1]B.[-1,0]C.[0,1]D.[-1,2]答案C解析由椭圆方程得F1(-1,0),F2(1,0),设P(x,y),∴=(-1-x,-y),=(1-x,-y),则·=x2+y2-1=eq\f(x2,2)∈[0,1],故选C.7.(2019·湖南郴州模拟)设e是椭圆eq\f(x2,4)+eq\f(y2,k)=1的离心率,且e∈eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),1)),则实数k的取值范围是()A.(0,3)B.eq\b\lc\(\rc\)(\a\vs4\al\co1(3,\f(16,3)))C.(0,3)∪eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(16,3),+∞))D.(0,2)答案C解析当k>4时,c=eq\r(k-4),由条件知eq\f(1,4)<eq\f(k-4,k)<1,解得k>eq\f(16,3);当0<k<4时,c=eq\r(4-k),由条件知eq\f(1,4)<eq\f(4-k,4)<1,解得0<k<3.故选C.8.若椭圆eq\f(x2,36)+eq\f(y2,9)=1的弦被点(4,2)平分,则此弦所在直线的斜率是()A.2B.-2C.eq\f(1,3)D.-eq\f(1,2)答案D解析设弦的端点为A(x1,y1),B(x2,y2),∴eq\b\lc\{\rc\(\a\vs4\al\co1(x\o\al(2,1)+4y\o\al(2,1)=36,,x\o\al(2,2)+4y\o\al(2,2)=36,))整理,得xeq\o\al(2,1)-xeq\o\al(2,2)