预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

求迷宫问题就是求出从入口到出口的路径。在求解时,通常用的是“穷举求解”的方法,即从入口出发,顺某一方向向前试探,若能走通,则继续往前走;否则沿原路退回,换一个方向再继续试探,直至所有可能的通路都试探完为止。为了保证在任何位置上都能沿原路退回(称为回溯),需要用一个后进先出的栈来保存从入口到当前位置的路径。首先用如图3.3所示的方块图表示迷宫。对于图中的每个方块,用空白表示通道,用阴影表示墙。所求路径必须是简单路径,即在求得的路径上不能重复出现同一通道块。为了表示迷宫,设置一个数组mg,其中每个元素表示一个方块的状态,为0时表示对应方块是通道,为1时表示对应方块为墙,如图3.3所示的迷宫,对应的迷宫数组mg如下:intmg[M+1][N+1]={/*M=10,N=10*/{1,1,1,1,1,1,1,1,1,1},{1,0,0,1,0,0,0,1,0,1},{1,0,0,1,0,0,0,1,0,1},{1,0,0,0,0,1,1,0,0,1},{1,0,1,1,1,0,0,0,0,1},{1,0,0,0,1,0,0,0,0,1},{1,0,1,0,0,0,1,0,0,1},{1,0,1,1,1,0,1,1,0,1},{1,1,0,0,0,0,0,0,0,1},{1,1,1,1,1,1,1,1,1,1}};伪代码:c语言描述如下:voidmgpath()/*路径为:(1,1)->(M-2,N-2)*/{inti,j,di,find,k;top++;/*初始方块进栈*/Stack[top].i=1;Stack[top].j=1;Stack[top].di=-1;mg[1][1]=-1;while(top>-1)/*栈不空时循环*/{i=Stack[top].i;j=Stack[top].j;di=Stack[top].di;if(i==M-2&&j==N-2)/*找到了出口,输出路径*/{printf("迷宫路径如下:\n");for(k=0;k<=top;k++){printf("\t(%d,%d)",Stack[k].i,Stack[k].j);if((k+1)%5==0)printf("\n");}printf("\n");return;}find=0;while(di<4&&find==0)/*找下一个可走方块*/{di++;switch(di){case0:i=Stack[top].i-1;j=Stack[top].j;break;case1:i=Stack[top].i;j=Stack[top].j+1;break;case2:i=Stack[top].i+1;j=Stack[top].j;break;case3:i=Stack[top].i;j=Stack[top].j-1;break;}if(mg[i][j]==0)find=1;}if(find==1)/*找到了下一个可走方块*/{Stack[top].di=di;/*修改原栈顶元素的di值*/top++;/*下一个可走方块进栈*/Stack[top].i=i;Stack[top].j=j;Stack[top].di=-1;mg[i][j]=-1;/*避免重复走到该方块*/}else/*没有路径可走,则退栈*/{mg[Stack[top].i][Stack[top].j]=0;/*让该位置变为其他路径可走方块*/top--;}}printf("没有可走路径!\n");}