预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共70页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

《平行与垂直》教案《平行与垂直》教案作为一名无私奉献的老师,时常会需要准备好教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么应当如何写教案呢?下面是小编精心整理的《平行与垂直》教案,欢迎阅读,希望大家能够喜欢。《平行与垂直》教案1课型:新授课教学目标:理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直.教学重点:两条直线平行和垂直的条件是重点,要求学生能熟练掌握,并灵活运用.教学难点:启发学生,把研究两条直线的平行或垂直问题,转化为研究两条直线的斜率的关系问题.注意:对于两条直线中有一条直线斜率不存在的情况,在课堂上老师应提醒学生注意解决好这个问题.教学过程:(一)先研究特殊情况下的两条直线平行与垂直上一节课,我们已经学习了直线的倾斜角和斜率的概念,而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度,并推导出了斜率的坐标计算公式.现在,我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直.讨论:两条直线中有一条直线没有斜率,(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.(二)两条直线的斜率都存在时,两直线的平行与垂直设直线L1和L2的斜率分别为k1和k2.我们知道,两条直线的平行或垂直是由两条直线的方向决定的,而两条直线的方向又是由直线的倾斜角或斜率决定的所以我们下面要研究的问题是:两条互相平行或垂直的直线,它们的斜率有什么关系?首先研究两条直线互相平行(不重合)的情形.如果L1∥L2(图1-29),那么它们的'倾斜角相等:α1=α2.(借助计算机,让学生通过度量,感知α1,α2的关系)∴tgα1=tgα2.即k1=k2.反过来,如果两条直线的斜率相等:即k1=k2,那么tgα1=tgα2.由于0°≤α1<180°,0°≤α<180°,∴α1=α2.又∵两条直线不重合,∴L1∥L2.结论:两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2,那么一定有L1∥L2;反之则不一定.下面我们研究两条直线垂直的情形.如果L1⊥L2,这时α1≠α2,否则两直线平行.设α2<α1(图1-30),甲图的特征是L1与L2的交点在x轴上方;乙图的特征是L1与L2的交点在x轴下方;丙图的特征是L1与L2的交点在x轴上,无论哪种情况下都有α1=90°+α2.因为L1、L2的斜率分别是k1、k2,即α1≠90°,所以α2≠0°.,可以推出:α1=90°+α2.L1⊥L2.结论:两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即注意:结论成立的条件.即如果k1·k2=-1,那么一定有L1⊥L2;反之则不一定.例题分析:例1已知A(2,3),B(-4,0),P(-3,1),Q(-1,2),试判断直线BA与PQ的位置关系,并证明你的结论.解:直线BA的斜率k1=(3-0)/(2-(-4))=0.5,直线PQ的斜率k2=(2-1)/(-1-(-3))=0.5,因为k1=k2=0.5,所以直线BA∥PQ.例2.已知四边形ABCD的四个顶点分别为A(0,0),B(2,-1),C(4,2),D(2,3),试判断四边形ABCD的形状,并给出证明.例3.已知A(-6,0),B(3,6),P(0,3),Q(-2,6),试判断直线AB与PQ的位置关系.解:直线AB的斜率k1=(6-0)/(3-(-6))=2/3,直线PQ的斜率k2=(6-3)(-2-0)=-3/2,因为k1·k2=-1所以AB⊥PQ.例4.已知A(5,-1),B(1,1),C(2,3),试判断三角形ABC的形状.分析:借助计算机作图,通过观察猜想:三角形ABC是直角三角形,其中AB⊥BC,再通过计算加以验证.(图略)课堂练习P89练习1.2.归纳小结:(1)两条直线平行或垂直的真实等价条件;(2)应用条件,判定两条直线平行或垂直.(3)应用直线平行的条件,判定三点共线.作业布置:P89-90习题3.1:A组5.8;课后记:《平行与垂直》教案2教学目标1、知识与技能:理解平行与垂直是同一平面内两条直线的两种特殊位置关系,初步认识平行线与垂线。2、过程与方法:在观察、操作、比较、概括中,经历探究平行线和垂线特征的过程,建立平行与垂直的概念。3、情感态度与价值观:在活动中丰富学生活动经验,培养学生的空间观念及空间想象能力。教学重难点1、教学重点:正确理解“相交”“互相平行”“互相垂直”等概念。2、教学难点: