预览加载中,请您耐心等待几秒...
1/9
2/9
3/9
4/9
5/9
6/9
7/9
8/9
9/9

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高中数学必修一必修知识点总结高中数学必修一必修知识点总结第一章集合与函数概念一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{?}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。a、列举法:将集合中的元素一一列举出来{a,b,c??}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。{x?R|x-3>2},{x|x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a?A(2)元素不在集合里,则元素不属于集合,即:a¢A常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R6、集合间的基本关系(1)“包含”关系:子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。记作:A?B(或B?A)注意:A?B有两种可能(1)A是B的一部分;(2)A与B是同一集合。??反之:集合A不包含于集合B,或集合B不包含集合A,记作A?B或B?A(2)“包含”关系:真子集如果集合A?B,但存在元素x?B且x¢A,则集合A是集合B的真子集如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)读作A真含于B(3)“相等”关系:A=B“元素相同则两集合相等”如果A?B同时B?A那么A=B(4)不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。(5)集合的性质①任何一个集合是它本身的子集。A?A②如果A?B,B?C,那么A?C③如果AB且BC,那么ACnn-1④有n个元素的集合,含有2个子集,2个真子集二、函数的概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.(1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;(2)与x的值相对应的`y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.2.函数的三要素:定义域、值域、对应法则3.函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。4、函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法1.描点法2.图象变换法:平移变换;伸缩变换;对称变换,即平移。三、函数的基本性质1.函数解析式子的求法(1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:1)代入法:2)待定系数法:3)换元法:2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.3、相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)4、区间的概念:(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示5、值域(先考虑其定义域)(1)观察法:直接观察函数