预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于社交媒体的投资者情绪对股市收益影响的大数据分析张书煜,王瑶,范婷婷,赵理,王旭泽(合肥工业大学管理学院,安徽合肥230009)[摘要]社交媒体中的信息是一个大数据库,通过微博搜索抓取社交媒体中投资者微博数据,利用中文语义分析技术,将该投资者情绪划分成六个等级,构建社交媒体中投资者的情绪指数,并且以同时段的股市为研究对象,基于VAR模型,运用Granger因果关系检验、脉冲响应函数,探讨社交媒体中不同程度的投资者情绪倾向与股市收益之间的预测能力和双向反馈关系。[关键词]社交媒体;投资者情绪;股市收益;大数据[DOI]10.13939/j.cnki.zgsc.2015.25.0651引言行为金融学认为,情绪可以深刻地影响个人的行为和决策。夏雨禾(2010)通过对438个样本的分析,对新浪微博互动的结构性要素以及发生机制进行了深入探究,研究结果发现,新浪微博是一个文化性、个人性和情绪性的互动空间。杨维(2011)从微博传播的及时性、草根性的特征出发,探讨了在网络舆情形成过程中微博起到的作用。梁坤,蒋翠清,丁勇(2013)利用特征提取等技术,抽取中文社会媒体上的干系人的话题,同时构建股票收益率的回归模型,研究中文社会媒体上千系人和话题的活动状况对股票收益率的影响。研究结果表明,中文社会媒体上不同干系人对股票收益的影响不同。而乔智和耿志民(2013)讨论了股吧对个人投资者情绪的影响研究,运用实证方法验证了个人投资者情绪与股市收益间存在的相关关系。徐琳(2013)基于微博中的投资者情绪的研究,使得让投资者知情股市收益研究,微博信息不仅反映了该信息发布者的心理和行为,同时也能够影响相关投资者的投资行为。2研究模型与方法1主要模型本文采用向量自回归模型(VAR)来检验社交媒体中的投资者情绪与股市收盘价、股市成交量之间的时滞关系。VAR模型把系统中每一个内生变量作为系统中所有内生变量的滞后项的函数来构造模型,其一般形式为:这些矩阵都是待估计的参数矩阵。是由k维随机误差项构成的向量,其元素相互之间可以同期相关,但不能与各自的滞后项相关以及不能与各自的滞后项相关以及不能与模型右边的变量相关。2.2研究方法第一,使用深圳视界信息技术有限公司研发的网页采集软件八爪鱼数据采集系统抓取海量的微博数据。该平台以分布式云计算平台为核心,从各种不同的网站或者网页获取大量的规范化数据。第二,以天为单位归类微博数据,并且清洗不能表现投资者情绪的垃圾数据,如非原创微博或者只包含链接地址的微博等。第三,运用中文语析分析工具,分析微博中包含的情感信息,量化投资者情绪。本课题将从两个层面来分析和量化投资者情绪信息:第一个层面可以将投资者情绪分为两个维度——积极情绪倾向和消极情绪倾向;第二个层面讲积极情绪和消极情绪继续细分,可分为一般、中度和高度积极情绪倾向以及一般、中度和高度消极情绪倾向。第四,接下来我们将会把得到的数据资料用专业软件Eviews进行整理并加以分析,以便我们制作出相应的统计图表等,最终基于大数据对投资者情绪与股市收益之间的相互关系进行分析。第五,通过Granger因果关系检验,论述和验证社会情绪变化与股票市场变化确实存在相关关系。第六,使用脉冲响应函数进行股市收益走势预测的实证分析,得出投资者情绪和股市收益走势相互间的预测能力,并提出改善方案。3实证研究3.1数据来源——社交媒体中的投资者情绪数据本文的数据来源于新浪微博平台,采用“微博搜索”的方式继续对股市相关的信息进行监测挖掘。在新浪微博界面,以股票名称为关键词,按时间搜索相应的与该只股票相关的原创微博信息。以“华谊兄弟”为实例研究对象,研究华谊兄弟公司从2014年9月19日到2015年2月28日,该公司在新浪微博的投资者情绪与股市收益之间的关系。微博的发表时间跨度为2014年9月19日至2014年12月5日,我们抓取到微博数量为1286688条。股市收益指数样本来自上证综合指数和深圳成分指数,包括上证综合指数收盘价、日成交量和深圳成分指数的收盘价、日成交量。股票数据均使用浙江核新同花顺网络信息股份有限公司提供的同花顺软件获得的。f日上证综合指数的和深圳成分指数的股指收益率Rt的计算公式为28日。3.2数据分析(1)量化投资者情绪。利用ROSTContentMining(简称ROSTCM)的情感分析模块对每天的微博进行情绪倾向分析。本文实验利用ROSTCM分析情绪的统计结果如图1所示。针对ROSTCM对于投资者情绪的分类,将分析三段积极情绪(一般、中度、高度)和三段消极情绪(一般、中度、高度)与股市收益之间的相互影响,不使用中性情绪作为实验数据。同时,选取该公司于2014年11月16日至2015年2月28日每天的综合指数收盘价和成交量产生的时间序列进行比较,并且,每个类别的情绪倾向数据之间也能进行比较