【备战2014】北京中国人民大学附中高考数学(题型预测+范例选讲)综合能力题选讲 第17讲 二次曲线(含详解).doc
一吃****仪凡
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
【备战2014】北京中国人民大学附中高考数学(题型预测+范例选讲)综合能力题选讲 第17讲 二次曲线(含详解).doc
4二次曲线题型预测高考试题中,解析几何试题的分值一般占20%左右,而圆锥曲线的内容在试卷中所占比例又一直稳定在14%左右,选择、填空、解答三种题型均有.选择、填空题主要考查圆锥曲线的标准方程及几何性质等基础知识、基本技能和基本方法的运用;以圆锥曲线为载体的解答题设计中,重点是求曲线的方程和直线与圆锥曲线的位置关系讨论,它们是热中之热.解答题的题型设计主要有三类:(1)求平面曲线(整体或部分)的方程或轨迹;(2)圆锥曲线的有关元素计算.关系证明或范围的确定;(3)涉及与圆锥曲线平移与对称变换、最值或位置关系
【备战2014】北京中国人民大学附中高考数学(题型预测+范例选讲)综合能力题选讲 第17讲 二次曲线(含详解).doc
二次曲线题型预测高考试题中,解析几何试题的分值一般占20%左右,而圆锥曲线的内容在试卷中所占比例又一直稳定在14%左右,选择、填空、解答三种题型均有.选择、填空题主要考查圆锥曲线的标准方程及几何性质等基础知识、基本技能和基本方法的运用;以圆锥曲线为载体的解答题设计中,重点是求曲线的方程和直线与圆锥曲线的位置关系讨论,它们是热中之热.解答题的题型设计主要有三类:(1)求平面曲线(整体或部分)的方程或轨迹;(2)圆锥曲线的有关元素计算.关系证明或范围的确定;(3)涉及与圆锥曲线平移与对称变换、最值或位置关系的
【备战2014】北京中国人民大学附中高考数学(题型预测+范例选讲)综合能力题选讲 第18讲 直线与二次曲线(含详解).doc
5直线与二次曲线题型预测直线与圆锥曲线的位置关系,是高考考查的重中之重.主要涉及弦长、弦中点、对称、参量的取值范围、求曲线方程等问题.解题中要充分重视韦达定理和判别式的应用.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.范例选讲例1.已知双曲线G的中心在原点,它的渐近线与圆相切.过点作斜率为的直线,使得和交于两点,和轴交于点,并且点在线段上,又满足.(Ⅰ)求双曲线的渐近线的方程;(Ⅱ)求双曲线的方程;(Ⅲ)椭圆的中心在原点,它的短轴是的实轴.如果中垂直于的平行
【备战2014】北京中国人民大学附中高考数学(题型预测+范例选讲)综合能力题选讲 第18讲 直线与二次曲线(含详解).doc
直线与二次曲线题型预测直线与圆锥曲线的位置关系,是高考考查的重中之重.主要涉及弦长、弦中点、对称、参量的取值范围、求曲线方程等问题.解题中要充分重视韦达定理和判别式的应用.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.范例选讲例1.已知双曲线G的中心在原点,它的渐近线与圆相切.过点作斜率为的直线,使得和交于两点,和轴交于点,并且点在线段上,又满足.(Ⅰ)求双曲线的渐近线的方程;(Ⅱ)求双曲线的方程;(Ⅲ)椭圆的中心在原点,它的短轴是的实轴.如果中垂直于的平行弦
【备战2014】北京中国人民大学附中高考数学(题型预测+范例选讲)综合能力题选讲 第19讲 二次曲线与二次曲线(含详解).doc
二次曲线与二次曲线题型预测高考说明中明确指出:“对于圆锥曲线的内容,不要求解有关两个二次曲线交点坐标的问题(两圆的交点除外)”.但是,在解答某些问题时(如1990年全国理科25题),难免会遇到两个二次曲线相切或相交的问题,因此,应该让学生明白:双二次曲线消元后,得到的方程的判别式与交点个数不等价.其次,有些问题涉及两个二次曲线,但所讨论和研究的并不是交点,而是它们的某些参量之间的关系,由于涉及到的参量较多,问题往往显得较为复杂,这类问题要特别加以注意,理清思路,顺藤摸瓜,设计好解题步骤.范例选讲例1.讨论