预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

《正弦定理和余弦定理》复习课教学设计《正弦定理和余弦定理》复习课教学设计⑷重视加强前后知识的密切联系。对于新知识的探究,必须增加足够的预备知识,做好衔接。要对学生已有的知识进行分析、整理和筛选,把对学生后继学习中有需要的知识选择出来,在新知识介绍之前进行复习。⑸注意避免过于繁琐的形式化训练。从数学教学的传统上看解三角形内容有不少高度技巧化、形式化的问题,我们在教学过程中应该注意尽量避免这一类问题的出现。二、实施教学过程(一)创设情境、揭示提出课题引例:要测量南北两岸a、b两个建筑物之间的距离,在南岸选取相距a点km的c点,并通过经纬仪测的,你能计算出a、b之间的距离吗?若人在南岸要测量对岸b、d两个建筑物之间的距离,该如何进行?(二)复习回顾、知识梳理1.正弦定理:正弦定理的变形:(1)(2);;利用正弦定理,可以解决以下两类有关三角形的问题.(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角.(从而进一步求出其他的边和角)2.余弦定理:a2=b2+c2-2bccosa;b2=c2+a2-2cacosb;c2=a2+b2-2abcosc.cosa=;cosb=;cosc=.利用余弦定理,可以解决以下两类有关三角形的问题:(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角.3.三角形面积公式:(三)自主检测、知识巩固1.;2.3.(四)典例导航、知识拓展【例1】△abc的三个内角a、b、c的对边分别是a、b、c,如果a2=b(b+c),求证:a=2b.剖析:研究三角形问题一般有两种思路.一是边化角,二是角化边.证明:用正弦定理,a=2rsina,b=2rsinb,c=2rsinc,代入a2=b(b+c)中,得sin2a=sinb(sinb+sinc)sin2a-sin2b=sinbsinc因为a、b、c为三角形的三内角,所以sin(a+b)≠0.所以sin(a-b)=sinb.所以只能有a-b=b,即a=2b.评述:利用正弦定理,将命题中边的关系转化为角间关系,从而全部利用三角公式变换求解.思考讨论:该题若用余弦定理如何解决?【例2】已知a、b、c分别是△abc的三个内角a、b、c所对的边,(1)若△abc的面积为,c=2,a=600,求边a,b的值;(2)若a=ccosb,且b=csina,试判断△abc的形状。(五)变式训练、归纳整理【例3】已知a、b、c分别是△abc的三个内角a、b、c所对的边,若bcosc=(2a-c)cosb(1)求角b(2)设,求a+c的值。剖析:同样知道三角形中边角关系,利用正余弦定理边化角或角化边,从而解决问题,此题所变化的是与向量相结合,利用向量的模与数量积反映三角形的边角关系,把本质看清了,问题与例2类似解决。,当前123