预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共11页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时素养检测三十一直线与平面垂直(二)(25分钟50分)一、选择题(每小题4分,共24分,多选题全部选对得4分,选对但不全对的得2分,有选错的得0分)1.若直线l与平面α不垂直,m⊂α,那么l与m的位置关系是()A.垂直B.平行C.异面或相交D.以上都有可能【解析】选D.由线面位置关系判断.2.空间中直线l和三角形的两边AC,BC同时垂直,则这条直线和三角形的第三边AB的位置关系是()A.平行B.垂直C.相交D.不确定【解析】选B.由题意可知,该直线垂直于三角形所确定的平面,故这条直线和三角形的第三边也垂直.3.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一个底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是()A.相交B.平行C.异面D.相交或平行【解析】选B.圆柱的母线垂直于圆柱的底面,由线面垂直的性质知是平行关系.4.如图所示,在正方体ABCD-A1B1C1D1中,若点E为A1C1上的一点,则直线CE一定垂直于()A.ACB.BDC.A1DD.A1D1【解析】选B.因为在正方体ABCD-A1B1C1D1中,ABCD是正方形,所以BD⊥A1C1,且BD⊥CC1,又因为A1C1∩CC1=C1,所以BD⊥平面A1C1C,又因为CE⊂平面A1C1C,所以BD⊥CE.5.若空间四边形ABCD的四边相等,则它的两对角线AC,BD的关系是()A.垂直且相交B.相交但不一定垂直C.垂直但不相交D.不垂直也不相交【解析】选C.取BD的中点O,连接AO,CO,则BD⊥AO,BD⊥CO,因为AO∩CO=O,所以BD⊥平面AOC,所以BD⊥AC.又因为BD,AC异面,所以选C.6.(多选题)如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论,其中正确的结论是()A.AC⊥SBB.AB∥平面SCDC.AB与SC所成的角等于DC与SA所成的角D.二面角B-SD-C的大小为45°【解析】选ABD.由题意,AC⊥平面BDS,所以AC⊥SB,故选项A正确;因为AB∥CD,AB⊄平面SCD,CD⊂平面SCD,所以AB∥平面SCD,故选项B正确;AB与SC所成的角是∠SCD,DC与SA所成的角是∠SAB,两者不相等,故选项C错误;二面角B-SD-C的平面角是∠BDC,是45°,故选项D正确.二、填空题7.(4分)已知AF⊥平面ABCD,DE⊥平面ABCD,如图所示,且AF=DE,AD=6,则EF=________.【解析】因为AF⊥平面ABCD,DE⊥平面ABCD,所以AF∥DE,又因为AF=DE,所以四边形AFED是平行四边形,所以EF=AD=6.答案:6三、解答题(共22分)8.(10分)如图,四边形BCC1B1是圆柱的轴截面,AA1是圆柱的一条母线,已知AB=2,AC=2QUOTE,AA1=3.(1)求证:AC⊥BA1;(2)求圆柱的侧面积.【解析】(1)依题意AB⊥AC,因为AA1⊥平面ABC,所以AA1⊥AC,又因为AB∩AA1=A,所以AC⊥平面AA1B1B,因为BA1⊂平面AA1B1B,所以AC⊥BA1.(2)在Rt△ABC中,AB=2,AC=2QUOTE,∠BAC=90°,所以BC=2QUOTE,S侧=2QUOTEπ×3=6QUOTEπ.9.(12分)如图,PA⊥平面ABD,PC⊥平面BCD,E,F分别为BC,CD上的点,且EF⊥AC.求证:QUOTE=QUOTE.【证明】因为PA⊥平面ABD,PC⊥平面BCD,所以PA⊥BD,PC⊥BD,PC⊥EF.又PA∩PC=P,所以BD⊥平面PAC.又EF⊥AC,PC∩AC=C,所以EF⊥平面PAC,所以EF∥BD,所以QUOTE=QUOTE.(35分钟70分)一、选择题(每小题4分,共16分,多选题全部选对得4分,选对但不全对的得2分,有选错的得0分)1.已知直线a,b,平面α,且a⊥α,下列条件中,能推出a∥b的是()A.b∥αB.b⊂αC.b⊥αD.b与α相交【解析】选C.由线面垂直的性质定理可知,当b⊥α,a⊥α时,a∥b.2.已知m,n表示两条不同的直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α【解析】选B.A中,两条直线也可以相交或异面,故A错误;B中,描述的是线面垂直的性质,故B正确;C中,还会出现n⊂α的情况,故C错误;D中,还会出现n∥α,n与α相交或n在α内的情况,故D错误.3.如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB的中点,PM垂直于△