高中数学讲义100微专题091复数.doc
灵慧****89
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
高中数学讲义100微专题091复数.doc
微专题91复数一、基础知识:复数题目通常在高考中有所涉及,题目不难,通常是复数的四则运算1、复数的代数形式为,其中称为的实部,称为的虚部(而不是),2、几类特殊的复数:(1)纯虚数:例如:,等(2)实数:3、复数的运算:设(1)(2)(3)注:乘法运算可以把理解为字母,进行分配率的运算。只是结果一方面要化成标准形式,另一方面要计算(4)注:除法不要死记公式而要理解方法:由于复数的标准形式是,所以不允许分母带有,那么利用平方差公式及的特点分子分母同时乘以的共轭复数即可。4、共轭复数:,对于而言,实部相同,虚
2022届高中数学讲义微专题91 复数 WORD版含解析.doc
微专题91复数一、基础知识:复数题目通常在高考中有所涉及,题目不难,通常是复数的四则运算1、复数的代数形式为,其中称为的实部,称为的虚部(而不是),2、几类特殊的复数:(1)纯虚数:例如:,等(2)实数:3、复数的运算:设(1)(2)(3)注:乘法运算可以把理解为字母,进行分配率的运算。只是结果一方面要化成标准形式,另一方面要计算(4)注:除法不要死记公式而要理解方法:由于复数的标准形式是,所以不允许分母带有,那么利用平方差公式及的特点分子分母同时乘以的共轭复数即可。4、共轭复数:,对于而言,实部相同,虚
高中数学讲义100微专题025定积分.doc
微专题25定积分一、基础知识1、相关术语:对于定积分(1)称为积分上下限,其中(2):称为被积函数(3):称为微分符号,当被积函数含参数时,微分符号可以体现函数的自变量是哪个,例如:中的被积函数为,而的被积函数为2、定积分的几何意义:表示函数与轴,围成的面积(轴上方部分为正,轴下方部分为负)和,所以只有当图像在完全位于轴上方时,才表示面积。可表示数与轴,围成的面积的总和,但是在求定积分时,需要拆掉绝对值分段求解3、定积分的求法:高中阶段求定积分的方法通常有2种:(1)微积分基本定理:如果是区间上的连续函数
高中数学讲义100微专题006函数的图像.doc
微专题05函数的对称性与周期性一、基础知识(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)关于轴对称(当时,恰好就是偶函数)(2)关于轴对称在已知对称轴的情况下,构造形如的等式只需注意两点,一是等式两侧前面的符号相同,且括号内前面的符号相反;二是的取值保证为所给对称轴即可。例如:关于轴对称,或得到均可,只是在求函数值方面,一侧是更为方便(3)是偶函数,则,进而可得到:关于轴对称。①要注意偶函数是指自变量取相反数,函
高中数学讲义100微专题085几何概型.doc
微专题85几何概型一、基础知识:1、几何概型:每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型2、对于一项试验,如果符合以下原则:(1)基本事件的个数为无限多个(2)基本事件发生的概率相同则可通过建立几何模型,利用几何概型计算事件的概率3、几何概型常见的类型,可分为三个层次:(1)以几何图形为基础的题目:可直接寻找事件所表示的几何区域和总体的区域,从而求出比例即可得到概率。(2)以数轴,坐标系为基础的题目:可将所求事件转化为数轴上的线段(或坐