预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

3-4基础巩固一、选择题1.lg20+lg50的值为()A.70B.1000C.3D.eq\f(5,2)[答案]C[解析]lg20+lg50=lg1000=3.故选C.2.已知a=log32,那么log38-2log36用a表示是()A.a-2B.5a-2C.3a-(1+a)2D.3a-a2-1[答案]A[解析]log38-2log36=log323-2(log32+log33)=3log32-2(log32+1)=3a-2(a+1)=a-2.故选A.3.若a>0,a≠1,x>0,n∈N+,则下列各式:①(logax)n=nlogax;②(logax)n=logaxn;③logax=-logaeq\f(1,x);④eq\r(n,logax)=eq\f(1,n)logax;⑤eq\f(logax,n)=logaeq\r(n,x);⑥logaxn=nlogax.其中成立的有()A.3个B.4个C.5个D.6个[答案]A[解析]③⑤⑥正确;①②④错误.4.若log2[log3(log4x)]=log3[log4(log2y)]=log4[log2(log3z)]=0,则x+y+z=()A.50B.58C.89D.111[答案]C[解析]∵log2[log3(log4x)]=0,∴log3(log4x)=1,∴log4x=3,∴x=43=64,同理y=16,z=9,∴x+y+z=89,故选C.5.如果f(10x)=x,则f(3)等于()A.log310B.lg3C.103D.310[答案]B[解析]令10x=3,∴x=lg3.故选B.6.方程log3(x-1)=log9(x+5)的解为()A.x=-1B.x=-1或x=4C.x=4D.x=-1且x=4[答案]C[解析]一定要注意对数的真数大于零,即eq\b\lc\{\rc\(\a\vs4\al\co1(x-12=x+5,x-1>0,x+5>0)),解得x=4,选C.二、填空题7.求值:[答案](1)25(2)eq\f(4,5)(3)72[解析]8.若正数m,满足10m-1<2512<10m,则m=__________.(lg2≈0.3010)[答案]155[解析]∵10m-1<2512<10m,∴m-1<512lg2<m,∴154.112<m<155.112,又m∈N+,∴m=155.三、解答题9.计算:(log2125+log425+log85)·(log52+log254+log1258).[解析]解法一:原式=(log253+eq\f(log225,log24)+eq\f(log25,log28))(log52+eq\f(log54,log525)+eq\f(log58,log5125))=eq\b\lc\(\rc\)(\a\vs4\al\co1(3log25+\f(2log25,2log22)+\f(log25,3log22)))eq\b\lc\(\rc\)(\a\vs4\al\co1(log52+\f(2log52,2log55)+\f(3log52,3log55)))=eq\b\lc\(\rc\)(\a\vs4\al\co1(3+1+\f(1,3)))log25·(3log52)=13log25·eq\f(log22,log25)=13.解法二:原式=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(lg125,lg2)+\f(lg25,lg4)+\f(lg5,lg8)))eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(lg2,lg5)+\f(lg4,lg25)+\f(lg8,lg125)))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3lg5,lg2)+\f(2lg5,2lg2)+\f(lg5,3lg2)))eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(lg2,lg5)+\f(2lg2,2lg5)+\f(3lg2,3lg5)))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(13lg5,3lg2)))eq\b\lc\(\rc\)(\a\vs4\al\co1(3\f(lg2,lg5)))=13.能力提升一、选择题1.A.lg3B.-lg3C.eq\f(1,lg3)D.-eq\f(1,lg3)[答案]C[解析]eq\f(1,log\f(1,4)\f(1,9))+eq\f(1,log\f(1,5)\f(1,3))=eq\f(lg\f(1,4),lg\f(1,9))+eq\f(lg\f(1,5),lg\f(1,3))=eq