预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2017届国考数学总复习(一轮)单元训练(导数的应用)1.(2015·福建,10)若定义在R上的函数f(x)满足f(0)=-1,其导函数f′(x)满足f′(x)>k>1,则下列结论中一定错误的是()A.feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,k)))<eq\f(1,k)B.feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,k)))>eq\f(1,k-1)C.feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,k-1)))<eq\f(1,k-1)D.feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,k-1)))>eq\f(k,k-1)2.(2015·陕西,12)对二次函数f(x)=ax2+bx+c(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是()A.-1是f(x)的零点B.1是f(x)的极值点C.3是f(x)的极值D.点(2,8)在曲线y=f(x)上3.(2015·新课标全国Ⅱ,12)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)4.(2015·新课标全国Ⅰ,12)设函数f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.eq\b\lc\[\rc\)(\a\vs4\al\co1(-\f(3,2e),1))B.eq\b\lc\[\rc\)(\a\vs4\al\co1(-\f(3,2e),\f(3,4)))C.eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(3,2e),\f(3,4)))D.eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(3,2e),1))5.(2014·新课标全国Ⅱ,12)设函数f(x)=eq\r(3)sineq\f(πx,m).若存在f(x)的极值点x0满足xeq\o\al(2,0)+2<m2,则m的取值范围是()A.(-∞,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)6.(2014·辽宁,11)当x∈时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是()A.B.eq\b\lc\[\rc\](\a\vs4\al\co1(-6,-\f(9,8)))C.D.7.(2016·全国Ⅱ,21)(1)讨论函数f(x)=eq\f(x-2,x+2)ex的单调性,并证明当x>0时,(x-2)ex+x+2>0;(2)证明:当a∈[0,1)时,函数g(x)=eq\f(ex-ax-a,x2)(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.