预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2016-2017学年江西省赣州市兴国三中高一(上)期中数学试卷一.选择题(每小题5分,共60分)1.已知全集U={0,1,2},且∁UA={2},则集合A等于()A.{0}B.{0,1}C.{1}D.∅2.满足条件{a}⊆A⊆{a,b,c}的所有集合A的个数是()A.1B.2C.3D.43.下列集合A到集合B的对应中,构成映射的是()A.B.C.D.4.下列四组函数中,表示同一个函数的是()A.B.C.D.5.已知函数f(x)的定义域为[﹣2,1],函数g(x)=,则g(x)的定义域为()A.(﹣,2]B.(﹣1,+∞)C.(﹣,0)∪(0,2)D.(﹣,2)6.已知()A.﹣312B.﹣174C.﹣76D.1747.函数y=ax与y=﹣logax(a>0,且a≠1)在同一坐标系中的图象只可能是()A.B.C.D.8.下列函数中,既不是奇函数,也不是偶函数的是()A.y=B.y=x+C.y=2x+D.y=x+ex9.函数y=(m2+2m﹣2)x是幂函数,则m=()A.1B.﹣3C.﹣3或1D.210.设a=log2,b=30.01,c=ln,则()A.c<a<bB.a<b<cC.a<c<bD.b<a<c11.下列各函数中,值域为(0,+∞)的是()A.B.C.y=x2+x+1D.12.已知函数f(x)=,满足对任意的实数x1≠x2都有<0成立,则实数a的取值范围为()A.(﹣∞,2)B.(﹣∞,]C.(﹣∞,2]D.[,2)二.填空题(每小题5分,共20分)13.偶函数f(x)的定义域为[t﹣4,t],则t=.14.已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣2x,则在R上f(x)的表达式为.15.已知二次函数的图象开口向上,且满足f=f,x∈R,则f的大小关系为.16.已知定义在R上的函数f(x)是满足f(x)+f(﹣x)=0,在(﹣∞,0)上,且f(5)=0,则使f(x)<0的x取值范围是.三.解答题(本大题共6小题,共70分,解答题应写出文字说明,证明过程或演算步骤)17.已知全集U=R,集合A={x|x>4},B={x|﹣6<x<6}.(1)求A∩B和A∪B;(2)求∁UB;(3)定义A﹣B={x|x∈A,且x∉B},求A﹣B,A﹣(A﹣B).18.(1)计算:2log32﹣log3+log38﹣25;(2)(2)﹣(﹣7.8)0﹣(3)+()﹣2.19.已知函数f(x)=x2+2ax+2,x∈[﹣5,5].(Ⅰ)当a=﹣1时,求函数f(x)的最大值和最小值;(Ⅱ)求实数a的取值范围,使y=f(x)在区间[﹣5,5]上是单调函数.20.函数f(x)=是定义在(﹣1,1)上的奇函数,且f()=.(Ⅰ)求f(x)的解析式,(Ⅱ)用函数单调性的定义证明f(x)在(﹣1,1)上是增函数.21.已知函数f(x)=a3x+1,g(x)=()5x﹣2,其中a>0,且a≠1.(1)若0<a<1,求满足f(x)<1的x的取值范围;(2)求关于x的不等式f(x)≥g(x)的解集.22.已知函数f(x)=loga(1+x),g(x)=loga(1﹣x),(a>0,且a≠1).(1)设a=2,函数f(x)的定义域为[3,63],求函数f(x)的最值.(2)求使f(x)﹣g(x)>0的x的取值范围.2016-2017学年江西省赣州市兴国三中高一(上)期中数学试卷参考答案与试题解析一.选择题(每小题5分,共60分)1.已知全集U={0,1,2},且∁UA={2},则集合A等于()A.{0}B.{0,1}C.{1}D.∅【考点】补集及其运算.【分析】根据补集的运算,即可得到结论.【解答】解:∵全集U={0,1,2},且∁UA={2},∴A={0,1},故选:B2.满足条件{a}⊆A⊆{a,b,c}的所有集合A的个数是()A.1B.2C.3D.4【考点】集合的表示法.【分析】根据题意M中必须有a这个元素,因此A的个数应为集合{b,c}的子集的个数.【解答】解:根据题意:A中必须有a这个元素,则A的个数应为集合{b,c}的子集的个数,所以是4个故选D.3.下列集合A到集合B的对应中,构成映射的是()A.B.C.D.【考点】映射.【分析】根据映射的定义与构成映射的条件,对A、B、C、D中的对应分别加以分析判断,可得A、B、C中的对应都不能构成映射,而D项符合映射的定义,可得答案.【解答】解:对于A,由于f(1)的值可能是4或5,不唯一,且f(2)没有值,故A中的对应不能构成映射;对于B,f(2)没有值,故B中的对应不能构成映射;对于C,由于f(1)的值可能是3或4,不唯一,故C中的对应不能构成映射;对于D,满足f(1)=a,f(2)=c且f(3)=b,满足映射的定义,故D中对应能构成映射故选:D4.下列四组函数中,表示同一个函数的