预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2020年高三年级第一次诊断性测试理科数学(卷面分值:150分考试时间:120分钟)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的第Ⅰ卷(选择题共60分)1.设集合,则()A.B.C.D.【答案】D【解析】【分析】求出集合A,直接进行交集运算即可.【详解】,故选:D【点睛】本题考查集合的交集运算,属于基础题.2.若复数z满足(其中i为虚数单位),则()A.2B.3C.D.4【答案】A【解析】【分析】对复数进行化简,然后根据复数模长的计算公式,得到答案.【详解】所以.故选:A.【点睛】本题考查复数的计算,求复数的模长,属于简单题.3.已知是两条不同的直线,是三个不同的平面,则下列命题正确的是()A.若,则B.若,则C.若,且,则D.若,且,则【答案】D【解析】【分析】根据空间中直线和平面的位置关系分别去判断各个选项,均可举出反例;可证明得出.【详解】若,,则或与异面或与相交,故选项错误;若,,则与可能相交,故选项错误;若直线不相交,则平面不一定平行,故选项错误;,或,又,故选项正确.本题正确选项:【点睛】本题考查空间中直线、平面之间位置关系有关命题的判断,考查学生的空间想象能力和对定理的掌握程度.4.设,则有()A.B.C.D.【答案】A【解析】【分析】比较三个数与中间量0,1的大小即可求得大小关系.【详解】因为,所以故选:A【点睛】本题考查利用指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题.5.已知向量满足,且与夹角为,则()A.-3B.-1C.1D.3【答案】B【解析】【分析】根据向量的运算法则与数量积的运算求解即可.详解】.故选:B【点睛】本题主要考查了向量的运算法则与数量积的运算,属于基础题型.6.已知双曲线的左、右焦点分别为,B为虚轴的一个端点,且,则双曲线的离心率为()A.2B.C.D.【答案】D【解析】【分析】由题意得,则即,又,即可解得.【详解】已知,因为,则在中,所以即,又,联立得,所以.故选:D【点睛】本题考查双曲线的几何性质,属于基础题.7.执行如图所示的程序框图,则输出的()A.3B.4C.5D.6【答案】C【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算S的值并输出相应变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得S=0,n=1S=2,n=2满足条件S<30,执行循环体,S=2+4=6,n=3满足条件S<30,执行循环体,S=6+8=14,n=4满足条件S<30,执行循环体,S=14+16=30,n=5此时,不满足条件S<30,退出循环,输出n的值为5.故选C.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.8.从这五个数字中随机选择两个不同的数字,则它们之和为偶数的概率为()A.B.C.D.【答案】B【解析】【分析】先求出基本事件总数n,再求出这两个数字的和为偶数包含的基本事件个数m,由此能求出这两个数字的和为偶数的概率【详解】从1、2、3、4、5、这五个数字中,随机抽取两个不同的数字,基本事件总数n,这两个数字的和为偶数包含的基本事件个数m4,∴这两个数字的和为偶数的概率为p.故选B.【点睛】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.9.等比数列的前项和为,且、、成等差数列,若,则()A.B.C.D.【答案】C【解析】【分析】设等比数列的公比为,根据题意得出关于的二次方程,求出的值,然后利用等比数列求和公式可求出的值.【详解】设等比数列的公比为,由于、、成等差数列,且,,即,即,解得,因此,.故选:C.【点睛】本题考查等比数列求和,解题的关键就是计算出等比数列的首项和公比,考查计算能力,属于基础题.10.将奇函数的图象向右平移个单位,得到的图象,则的一个单调减区间为()A.B.C.D.【答案】D【解析】【分析】由两角差的正弦函数公式,函数的图象变换规律可求,利用余弦函数的单调性可求其单调递减区间,比较各个选项即可得解.【详解】解:由已知,因为为奇函数,,即,,时,,,,令,,,,当时,为的一个单调减区间,故选:D.【点睛】本题主要考查了两角差的正弦函数公式,函数的图象变换规律,正弦函数的单调性,考查了转化思想和数形结合思想,属于基础题.11.已知抛物线C:的焦点F,点是抛物线上一点,以M为圆心的圆与直线交于A、B两点(A在B的上方),若,则抛物线C的方程为()A.B.C.D.【答案】C【解析】【分析】根据抛物线的定义,表示出,再表示出,利用,得到和之间的关系,将点坐标,代入到抛物线中,从而解出的值,得到答案.【详解】抛物线C:,其焦点,准线方程,因为点是抛物线上一点