预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

圆锥曲线第二定义解题例说赵建勋圆锥曲线的第二定义出现在例题中,教材中没有专门举例说明其应用,有很多同学对其认识不足,为此本文举例说明第二定义的应用。一、求焦点弦长例1过抛物线的焦点F作直线交抛物线于A()、B(),若,求|AB|的长。解:设AB的中点为E,点A、E、B在抛物线准线l:上的射影分别为G、H、M。由第二定义知:。二、求离心率例2设椭圆=1(a>b>0)的右焦点为,右准线为l1,若过F1且垂直于x轴的弦的长度等于F1到准线l1的距离,求椭圆的离心率。解:如图,AB是过F1垂直于x轴的弦,为F1到准线l1的距离,AD⊥l1于D,则|AD|=|F1C|,由题意知。由椭圆的第二定义知:三、求点的坐标例3双曲线的右支上一点P,到左焦点F1与到右焦点F2的距离之比为2:1,求点P的坐标。解:设点P()(),双曲线的左准线为l1:,右准线为l2:,则点P到l1、l2的距离分别为。所以,,解得。将其代入原方程,得。因此,点P的坐标为。四、求离心率的范围例4已知椭圆,分别是左、右焦点,若椭圆上存在点P,使∠F1PF2=90°,求椭圆的离心率e的取值范围。解:设点P(),则由第二定义得,。因为为直角三角形,所以。即解得,由椭圆方程中x的范围知。,解得。五、求最值例5已知点A(),设点F为椭圆的右焦点,点M为椭圆上一动点,求的最小值,并求此时点M的坐标。解:如图,过点A作右准线l的垂线,垂足为N,与椭圆交于点M。∵椭圆的离心率∴由第二定义得∴的最小值为|AN|的长,且∴的最小值为10,此时点M的坐标为(,)编辑心语:学习圆锥曲线知识时,要注意掌握它们的两个定义,并且加以灵活运用,有时会有山重水复疑无路,柳暗花明又一村的感受。