预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。核心考点·精准研析考点一直线、平面平行的基本问题1.如图,P为平行四边形ABCD所在平面外一点,Q为PA的中点,O为AC与BD的交点,下面说法错误的是()A.OQ∥平面PCDB.PC∥平面BDQC.AQ∥平面PCDD.CD∥平面PAB2.已知a,b表示直线,α,β,γ表示平面,则下列推理正确的是()A.α∩β=a,b⊂α⇒a∥bB.α∩β=a,a∥b⇒b∥α且b∥βC.a∥β,b∥β,a⊂α,b⊂α⇒α∥βD.α∥β,α∩γ=a,β∩γ=b⇒a∥b3.如图是正方体的平面展开图.关于这个正方体,有以下判断:①EC⊥平面AFN;②CN∥平面AFB;③BM∥DE;④平面BDE∥平面NCF.其中正确判断的序号是()A.①③B.②③C.①②④D.②③④4.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.【解析】1.选C.因为O为平行四边形ABCD对角线的交点,所以AO=OC,又Q为PA的中点,所以QO∥PC.由线面平行的判定定理,可知A、B正确,又四边形ABCD为平行四边形,所以AB∥CD,故CD∥平面PAB,故D正确.2.选D.选项A中,α∩β=a,b⊂α,则a,b可能平行也可能相交,故A不正确;选项B中,α∩β=a,a∥b,则可能b∥α且b∥β,也可能b在平面α或β内,故B不正确;选项C中,a∥β,b∥β,a⊂α,b⊂α,根据面面平行的判定定理,再加上条件a∩b=A,才能得出α∥β,故C不正确;选项D为面面平行性质定理的符号语言.3.选C.由已知中正方体的平面展开图,得到正方体的直观图如图所示:由⇒FN⊥平面EMC,故FN⊥EC;同理AF⊥EC,故EC⊥平面AFN,故①正确;由CN∥BE,则CN∥平面AFB,故②正确;由图可知BM∥DE显然错误,故③不正确;由BD∥NF得BD∥平面NCF,DE∥CF得DE∥平面NCF,由面面平行判定定理可知平面BDE∥平面NCF,故④正确.4.因为平面ABFE∥平面CDHG,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面CDHG=HG,所以EF∥HG.同理EH∥FG,所以四边形EFGH是平行四边形.答案:平行四边形直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件.(2)结合题意构造或绘制图形,结合图形作出判断.(3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等.【秒杀绝招】直接法解T1,因为Q是AP的中点,故AQ∩平面PCD=P,所以AQ∥平面PCD是错误的.考点二直线、平面平行的判定与性质【典例】1.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H.D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为________.2.在直三棱柱ABC-A1B1C1中,△ABC为正三角形,点D在棱BC上,且CD=3BD,点E,F分别为棱AB,BB1的中点.求证:A1C∥平面DEF.【解题导思】序号联想解题1由直线SB∥平面DEFH,联想到利用线面平行的性质,判定四边形DEFH的形状,进而得到其面积.2求证A1C∥平面DEF,只要设法在平面DEF上找到与A1C平行的直线即可,因为CD=3BD,故联想到连接A1B,在△BA1C中由比例关系证明平行关系.【解析】1.取AC的中点G,连接SG,BG.易知SG⊥AC,BG⊥AC,SG∩BG=G,故AC⊥平面SGB,所以AC⊥SB.因为SB∥平面DEFH,SB⊂平面SAB,平面SAB∩平面DEFH=HD,则SB∥HD.同理SB∥FE.又D,E分别为AB,BC的中点,则H,F也为AS,SC的中点,从而得HF∥AC∥DE,且HF=AC=DE,所以四边形DEFH为平行四边形.又AC⊥SB,SB∥HD,DE∥AC,所以DE⊥HD,所以四边形DEFH为矩形,其面积S=HF·HD=·=.答案:2.如图,连接AB1,A1B,交于点H,A1B交EF于点K,连接DK,因为ABB1A1为矩形,所以H为线段A1B的中点,因为点E,F分别为棱AB,BB1的中点,所以点K为线段BH的中点,所以A1K=3BK,又因为CD=3BD,所以A1C∥DK,又A1C⊄平面DEF,DK⊂平面DEF,所以A1C∥平面DEF.1.利用判定定理判定直线与平面平行,关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.2.判断或证明线面平行的