预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2017年山东师大附中高考数学模拟试卷(文科)(8)一、选择题:本大题共10小题,每小题5分,共50分.1.已知集合A={x|﹣2≤x≤3},B={x|x2+2x﹣8>0},则A∪B()A.(2,3]B.(﹣∞,﹣4)∪[﹣2,+∞)C.[﹣2,2)D.(﹣∞,3]∪(4,+∞)2.已知(﹣1+3i)(2﹣i)=4+3i(其中i是虚数单位),则z的虚部为()A.1B.﹣1C.iD.﹣i3.设不等式组所表示的平面区域是一个三角形,则a的取值范围是()A.[5,7]B.(5,7)C.(5,7]D.[5,7)4.已知语句p:函数y=f(x)的导函数是常数函数;语句q:函数y=f(x)是一次函数,则语句p是语句q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.设某几何体的三视图如图所示(尺寸的长度单位为m),则该几何体的体积为()A.12m3B.C.4m3D.8m36.若将函数f(x)=sin2x+cos2x的图象向右平移φ(φ>0)个单位,所得图象关于原点对称,则φ的最小值为()A.B.C.D.7.某程序框图如图所示,则该程序运行后输出的值等于()A.B.C.D.8.已知向量=(x﹣1,2),=(y,﹣4),若∥,则4x+2y的最小值为()A.4B.2C.2D.9.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?()A.9日B.8日C.16日D.12日10.已知双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点,P是双曲线在第一象限上的点,直线PO,PF2分别交双曲线C左、右支于另一点M,N,|PF1|=2|PF2|,且∠MF2N=60°,则双曲线C的离心率为()A.B.C.D.二、填空题:本大题共5个小题,每小题5分,共25分.11.第十届中国艺术节在山东济南胜利闭幕,山东省京剧院的京剧《瑞蚨祥》获得“第十四届文华奖﹣﹣文华大奖”,评委给她的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为.12.已知点O是边长为1的等边三角形ABC的中心,则(+)•(+)=.13.花园小区内有一块三边长分别是5m,5m,6m的三角形绿化地,有一只小花猫在其内部玩耍,若不考虑猫的大小,则在任意指定的某时刻,小花猫与三角形三个顶点的距离均超过2m的概率是.14.36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可求得100的所有正约数之和为.15.已知R上的不间断函数g(x)满足:①当x>0时,g'(x)>0恒成立;②对任意的x∈R都有g(x)=g(﹣x).又函数f(x)满足:对任意的x∈R,都有f(+x)=﹣f(x)成立,当x∈[0,]时,f(x)=x3﹣3x.若关于x的不等式g[f(x)]≤g(a2﹣a+2),对于x∈[2﹣3,2+3]恒成立,则a的取值范围为.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.设函数f(x)=sin(﹣)﹣2cos2+1.(Ⅰ)求函数y=f(x)的最小正周期,并求出函数y=f(x)对称中心的坐标;(Ⅱ)求函数y=f(x)在x∈[,2]时的最大值.17.某学校高三年级800名学生在一次百米测试中,成绩全部介于13秒与18秒之间.抽取其中50个样本,将测试结果按如下方式分成五组:第一组[13,14);第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(Ⅰ)若成绩小于14秒被认为优秀,求该样本在这次百米测试中优秀的人数;(Ⅱ)请估计本年级这800人中第三组的人数;(Ⅲ)若样本第一组只有一名女生,第五组只有一名男生,现从第一、第五组中各抽取一名学生组成一个实验组,求在被抽出的2名学生中恰好为一名男生和一名女生的概率.18.等差数列{an}中,a2+a3+a4=15,a5=9.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设,求数列{×bn}的前n项和Sn.19.如图,四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.(1)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(2)证明:无论点E在BC边的何处,都有PE⊥AF;(3)求三棱锥P﹣AEF体积的最大值.