预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2023~2024学年安徽县中联盟高二10月联考数学试题考生注意:1.满分150分,考试时间120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.3.本卷命题范围:人教版必修第一册、第二册,选择性必修第一册2.2结束.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知是虚数单位,,则()A.B.C.2D.【答案】D【解析】【分析】根据题意,利用复数相等列出方程组,求得的值,结合复数模的计算公式,即可求解.【详解】由,可得,解得,则.故选:D.2.已知直线的一个方向向量为,则直线的倾斜角()A.B.C.D.【答案】C【解析】【分析】根据直线的方向向量得到直线的斜率,进而求出倾斜角.【详解】因为直线的一个方向向量为,所以直线的斜率,又因为,所以,故选:C.3.在棱长为2的正方体中,分别为的中点,则()A.B.C.D.【答案】A【解析】【分析】应用向量加法法则得到,再应用向量数量积的运算律求模.【详解】由题设,易知是边长为的正三角形,所以.故选:A4.已知直线与轴交于点,将绕点逆时针旋转后与轴交于点,要使直线平移后经过点,则应将直线()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】D【解析】【分析】求得旋转后直线的斜率、方程以及点的坐标,再根据直线平移即可求得结果.【详解】设直线的倾斜角为,则,旋转后的直线斜率为,又点坐标为,所以旋转后的直线方程为,因为直线过点,所以把直线向右平移个单位长度后经过点,故选:D.5.已知向量,若共面,则在上的投影向量的模为()A.B.C.D.【答案】B【解析】【分析】利用共面的条件求出,再利用投影向量及模的定义计算即得.【详解】因为共面,则存在实数,使得,即,于是,所以在上的投影向量的模为.故选:B6.光线通过点,在直线上反射,反射光线经过点,则反射光线所在直线方程为()AB.C.D.【答案】C【解析】【分析】先求出关于直线的对称点,从而得到反射光线所在直线经过点和对称点,从而得到反射光线所在直线方程.【详解】设点关于直线的对称点为,则,解得,故.由于反射光线所在直线经过点和,所以反射光线所在直线的方程为,即.故选:C.7.已知向量,集合,其中,则()A.B.C.若,则为钝角D.若,则【答案】D【解析】【分析】根据题意,令,求得,得到,可判定A、B错误;由,得到为锐角,可判定C错误;求得,可判定D正确.【详解】由向量,可得,令,可得,解得,此时,所以,所以A、B错误;又由,可得,所以为锐角,所以C错误;由向量,可得,所以D正确.故选:D.8.已知,则()A.B.C.D.【答案】A【解析】【分析】采用放缩法和中间值比较大小,得到.【详解】因为,,故,,所以.故选:A.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.定义域为的奇函数满足,且在上单调递减,则()A.B.C.为偶函数D.不等式的解集为【答案】AD【解析】【分析】根据题意,结合函数的单调性与奇偶性,可得判定A正确,B错误;结合函数的图象变换,可判定C错误;结合题意,分和,两种情况,结合函数的单调性,求得不等式的解集,可判定D正确.【详解】对于A中,由,且在上单调递减,可得,所以A正确;对于B中,由函数为奇函数,且在上单调递减,可函数的图象关于原点对称可知在上单调递减,且,则,所以,所以B错误;对于C中,函数向左平移2个单位,可得为非奇非偶函数,所以C错误;对于D中,由函数是的奇函数,满足,且在上单调递减,可得,且在上单调递减,又由不等式,可得当时,,解得;当时,,解得,所以不等式的解集为,所以D正确.故选:AD.10.如图,两两垂直,且,以点为坐标原点,所在直线分别为轴,轴,轴建立空间直角坐标系,则()A.点关于直线的对称点的坐标为B.点关于点的对称点的坐标为C.夹角的余弦值为D.平面的一个法向量的坐标为【答案】AD【解析】【分析】对A:由以及对称点构成正方形,即可求得对称点坐标;对B:由中点坐标公式,即可判断;对C:利用余弦定理求得,即可判断;对D:写出平面中两个不共线的向量坐标,求平面法向量即可.【详解】对A:设点关于直线的对称点为,则四边形为正方形,所以坐标为,A正确;对B:设点关于点的对称点为,则中点为,由得,B错误;对C:由,得,所以夹角的余弦值为,C错误;对D,因为,设平面的一个法向量的坐标为,,则,取得平面的一个法向量的坐标为,D正确;故选