预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2023年中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在正方形ABCD中,AB=,P为对角线AC上的动点,PQ⊥AC交折线A﹣D﹣C于点Q,设AP=x,△APQ的面积为y,则y与x的函数图象正确的是()A.B.C.D.2.轮船沿江从港顺流行驶到港,比从港返回港少用3小时,若船速为26千米/时,水速为2千米/时,求港和港相距多少千米.设港和港相距千米.根据题意,可列出的方程是().A.B.C.D.3.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是()A.A1(4,4),C1(3,2)B.A1(3,3),C1(2,1)C.A1(4,3),C1(2,3)D.A1(3,4),C1(2,2)4.如图,是的直径,是的弦,连接,,,则与的数量关系为()A.B.C.D.5.如图所示,若将△ABO绕点O顺时针旋转180°后得到△A1B1O,则A点的对应点A1点的坐标是()A.(3,﹣2)B.(3,2)C.(2,3)D.(2,﹣3)6.若=1,则符合条件的m有()A.1个B.2个C.3个D.4个7.-4的相反数是()A.B.C.4D.-48.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车辆,根据题意,可列出的方程是().A.B.C.D.9.平面直角坐标系中,若点A(a,﹣b)在第三象限内,则点B(b,a)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是()A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.已知反比例函数y=,当x>0时,y随x增大而减小,则m的取值范围是_____.12.如图,PA,PB分别为的切线,切点分别为A、B,,则______.13.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是__.14.分解因式______.15.如图,线段AB两端点坐标分别为A(﹣1,5)、B(3,3),线段CD两端点坐标分别为C(5,3)、D(3,﹣1)数学课外兴趣小组研究这两线段发现:其中一条线段绕着某点旋转一个角度可得到另一条线段,请写出旋转中心的坐标________.16.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为_____.(结果保留π)17.已知扇形的弧长为,圆心角为45°,则扇形半径为_____.三、解答题(共7小题,满分69分)18.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(A在B的左侧),其中点B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)将抛物线向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;(3)设点P是抛物线上且在x轴上方的任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.19.(5分)如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线()过E,A′两点.(1)填空:∠AOB=°,用m表示点A′的坐标:A′(,);(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且时,△D′OE与△ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:①求a,b,m满足的关系式;②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.20.(8分)在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是边BC上任意一点,连接AD,过点C作CE⊥AD于点E.(1)如图1,若∠BAD=15°,且CE=1,求线段B