预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A.B.C.D.2.矩形不具备的性质是()A.是轴对称图形B.是中心对称图形C.对角线相等D.对角线互相垂直3.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是()A.y=2x2+3B.y=2x2﹣3C.y=2(x+3)2D.y=2(x﹣3)24.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.5.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sinA=B.cosA=C.tanA=D.cosA=6.如图2,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.BA=BCB.AC、BD互相平分C.AC=BDD.AB∥CD7.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°8.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为().A.;B.;C.;D..9.下列事件是必然事件的是()A.打开电视机,正在播放动画片B.经过有交通信号灯的路口,遇到红灯C.过三点画一个圆D.任意画一个三角形,其内角和是10.如图,中,,在同一平面内,将绕点旋转到的位置,使得,则旋转角等于()A.B.C.D.11.下列事件中是必然事件是()A.明天太阳从西边升起B.篮球队员在罚球线投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面向上12.如图,在△ABC中,点D是在边BC上,且BD=2CD,=,=,那么等于()A.=+B.=+C.=-D.=+二、填空题(每题4分,共24分)13.点向左平移两个单位后恰好位于双曲线上,则__________.14.如图,在⊙O中,∠AOB=60°,则∠ACB=____度.15.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为_______________________16.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为米,旗杆的影长为米,若小青的身高为米,则旗杆的高度为__________米.17.设分别为一元二次方程的两个实数根,则____.18.若反比例函数y=﹣的图象经过点A(m,3),则m的值是_____.三、解答题(共78分)19.(8分)如图,已知△ABO中A(﹣1,3),B(﹣4,0).(1)画出△ABO绕着原点O按顺时针方向旋转90°后的图形,记为△A1B1O;(2)求第(1)问中线段AO旋转时扫过的面积.20.(8分)如图,等边△ABC中,点D在AC上(CD<AC),连接BD.操作:以A为圆心,AD长为半径画弧,交BD于点E,连接AE.(1)请补全图形,探究∠BAE、∠CBD之间的数量关系,并证明你的结论;(2)把BD绕点D顺时针旋转60°,交AE于点F,若EF=mAF,求的值(用含m的式子表示).21.(8分)如图,已知二次函数的图象经过,两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与轴交于点,连接,,求的面积.22.(10分)已知关于x的方程x2-(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m-1)2+(3+m)(3-m)+7m-5的值(要求先化简再求值).23.(10分)现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;(2)求乙所拿的两袋垃圾不同类的概率.24.(10分)阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图,△ABC中,D为BC中点,且AD=AC,M为AD中点,连结CM并延长交AB于N.探究线段AN、MN、CN之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现线段AN、AB之间存在某种数量关系.”小强:“通过倍长不同的中线,可以得到不同的结论,但都是正确的,大家就大胆的探究吧.”小伟:“通过构造、证明相似三角形、全等三角形,就可以将问题解