预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列函数中,是的反比例函数()A.B.C.D.2.“黄金分割”是一条举世公认的美学定律.例如在摄影中,人们常依据黄金分割进行构图,使画面整体和谐.目前,照相机和手机自带的九宫格就是黄金分割的简化版.要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置()A.①B.②C.③D.④3.方程的根是()A.2B.0C.0或2D.0或34.用一块长40cm,宽28cm的矩形铁皮,在四个角截去四个全等的正方形后,折成一个无盖的长方形盒子,若折成的长方体的底面积为,设小正方形的边长为xcm,则列方程得()A.(20﹣x)(14﹣x)=360B.(40﹣2x)(28﹣2x)=360C.40×28﹣4x2=360D.(40﹣x)(28﹣x)=3605.我市某家快递公司,今年8月份与10月份完成投递的快递总件数分别为6万件和8.64万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6(1+x)=8.64B.6(1+2x)=8.64C.6(1+x)2=8.64D.6+6(1+x)+6(1+x)2=8.646.若,设,,,则、、的大小顺序为()A.B.C.D.7.一个不透明的盒子中装有5个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大8.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A.B.C.D.9.如果,那么的值为()A.B.C.D.10.如图,以AB为直径的⊙O上有一点C,且∠BOC=50°,则∠A的度数为()A.65°B.50°C.30°D.25°二、填空题(每小题3分,共24分)11.已知抛物线的对称轴是直线,其部分图象如图所示,下列说法中:①;②;③;④当时,,正确的是_____(填写序号).12.如图,在反比例函数的图象上有点它们的横坐标依次为2,4,6,8,10,分别过这些点作轴与轴的垂线,图中所构成的阴影部分的面积从左到右依次为则点的坐标为________,阴影部分的面积________.13.在中,,如图①,点从的顶点出发,沿的路线以每秒1个单位长度的速度匀速运动到点,在运动过程中,线段的长度随时间变化的关系图象如图②所示,则的长为__________.14.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.15.若是一元二次方程的两个根,则=___________.16.如图,将绕顶点A顺时针旋转后得到,且为的中点,与相交于,若,则线段的长度为________.17.如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,则EF=________.18.已知抛物线,如果把该抛物线先向左平移个单位长度,再作关于轴对称的图象,最后绕原点旋转得到新抛物线,则新抛物线的解析式为______.三、解答题(共66分)19.(10分)“每天锻炼一小时,健康生活一辈子”,学校准备从小明和小亮2人中随机选拔一人当“阳光大课间”领操员,体育老师设计的游戏规则是:将四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图1,扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明两人各抽取一张扑克牌,两张牌面数字之和为奇数时,小亮当选;否则小明当选.(1)请用树状图或列表法求出所有可能的结果;(2)请问这个游戏规则公平吗?并说明理由.20.(6分)(1)计算:|1﹣﹣2cos45°+2sin30°(2)解方程:x2﹣6x﹣16=021.(6分)现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;(2)求乙所拿的两袋垃圾不同类的概率.22.(8分)已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE;连结EC,取EC的中点M,连结DM和BM.(1)若点D在边AC上,点E在边AB上且与点B不重合,如图1,求证:BM=DM且BM⊥DM;(2)如果将