预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2023年中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.的相反数是()A.B.﹣C.﹣D.2.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14B.7C.﹣2D.23.2017年新设了雄安新区,周边经济受到刺激综合实力大幅跃升,其中某地区生产总值预计可增长到305.5亿元其中305.5亿用科学记数法表示为()A.305.5×104B.3.055×102C.3.055×1010D.3.055×10114.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数B.方差C.平均数D.中位数5.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.菱形C.平行四边形D.正五边形6.计算的结果是()A.a2B.-a2C.a4D.-a47.在下面的四个几何体中,左视图与主视图不相同的几何体是()A.B.C.D.8.若分式有意义,则x的取值范围是A.x>1B.x<1C.x≠1D.x≠09.若点都是反比例函数的图象上的点,并且,则下列各式中正确的是(()A.B.C.D.10.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15°B.55°C.65°D.75°二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:2a2﹣2=_____.12.因式分解:a3﹣2a2b+ab2=_____.13.我们知道方程组的解是,现给出另一个方程组,它的解是____.14.________.15.中国的陆地面积约为9600000km2,把9600000用科学记数法表示为.16.关于x的分式方程=2的解为正实数,则实数a的取值范围为_____.三、解答题(共8题,共72分)17.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.18.(8分)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.19.(8分)如图,AD是△ABC的中线,过点C作直线CF∥AD.(问题)如图①,过点D作直线DG∥AB交直线CF于点E,连结AE,求证:AB=DE.(探究)如图②,在线段AD上任取一点P,过点P作直线PG∥AB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明.(应用)在探究的条件下,设PE交AC于点M.若点P是AD的中点,且△APM的面积为1,直接写出四边形ABPE的面积.20.(8分)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富.某班模拟开展“中国诗词大赛”比赛,对全班同学成绩进行统计后分为“A优秀”、“B一般”、“C较差”、“D良好”四个等级,并根据成绩绘制成如下两幅不完整的统计图.请结合统计图中的信息,回答下列问题:(1)本班有多少同学优秀?(2)通过计算补全条形统计图.(3)学校预全面推广这个比赛提升学生的文化素养,估计该校3000人有多少人成绩良好?21.(8分)(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2)(m﹣1﹣).22.(10分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?23.(12分)阅读与应用:阅读1:a、b为实数,且a>0,b>0,因为,所以,从而(当a=b时取等号).阅读2:函数(常数m>0,x>0),由阅读1结论可知:,所以当即时,函数的最小值为.阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为,求当x=__________时,周长的最小值为__________.问题2:已知函数y1=x+1(x>-1)与函数y2=x2+2x+17(x>-1),当x