预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在等腰△ABC中,AB=AC=10,BC=12,O是△ABC外一点,O到三边的垂线段分别为OD,OE,OF,且OD:OE:OF=1:4:4,则AO的长度是()A.10B.9C.D.2.关于等腰三角形,以下说法正确的是()A.有一个角为40°的等腰三角形一定是锐角三角形B.等腰三角形两边上的中线一定相等C.两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D.等腰三角形两底角的平分线的交点到三边距离相等3.图1中,每个小正方形的边长为1,的三边a,b,c的大小关系是()A.a<c<bB.a<b<cC.c<a<bD.c<b<a4.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A.6B.5C.4D.35.在△ABC中,已知AB=4cm,BC=9cm,则AC的长可能是()A.5cmB.12cmC.13cmD.16cm6.两个全等的等腰直角三角形拼成一个四边形,则可拼成的四边形是()A.平行四边形B.正方形或平行四边形C.正方形或平行四边形或梯形D.正方形7.下列图形中,不一定是轴对称图形的是()A.正方形B.等腰三角形C.直角三角形D.圆8.直线沿轴向下平移个单位后,图象与轴的交点坐标是()A.B.C.D.9.以下列各组线段为边作三角形,不能构成直角三角形的是()A.3,5,6B.3,4,5C.5,12,13D.9,40,4110.数0.0000045用科学记数法可表示为()A.4.5×10﹣7B.4.5×10﹣6C.45×10﹣7D.0.45×10﹣511.下列图形中,是轴对称图形的是().A.B.C.D.12.如图,△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,则△DBE的周长等于()A.10cmB.8cmC.12cmD.9cm二、填空题(每题4分,共24分)13.已知,,则__________14.如图,在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,与y轴交于点B,点P在线段AB上,PC⊥x轴于点C,则△PCO周长的最小值为_____15.十二边形的内角和是________度.正五边形的每一个外角是________度.16.在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有个.17.将用四舍五入法精确到为__________.18.如图,正方形ODBC中,OB=,OA=OB,则数轴上点A表示的数是__________.三、解答题(共78分)19.(8分)问题探究:小明根据学习函数的经验,对函数的图象与性质进行了探究.下面是小明的探究过程,请你解决相关问题:在函数中,自变量x可以是任意实数;如表y与x的几组对应值:x01234y012321a______;若,为该函数图象上不同的两点,则______;如图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象:该函数有______填“最大值”或“最小值”;并写出这个值为______;求出函数图象与坐标轴在第二象限内所围成的图形的面积;观察函数的图象,写出该图象的两条性质.20.(8分)A,B两地相距80km,甲、乙两人骑车同时分别从A,B两地相向而行,假设他们都保持匀速行驶,则他们各自到A地的距离s(km)都是骑车时间t(h)的一次函数,如图所示.(1)求乙的s乙与t之间的解析式;(2)经过多长时间甲乙两人相距10km?21.(8分)直线PA是一次函数y=x+1的图象,直线PB是一次函数y=-2x+2的图象.(1)求A,B,P三点的坐标;(2)求四边形PQOB的面积;22.(10分)如图,图中数字代表正方形的面积,,求正方形的面积.(提示:直角三角形中,角所对的直角边等于斜边的一半)23.(10分)(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.(材料理解)(1)在图1中证明小