预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是()A.B.C.D.3.如图,△ABC是⊙O的内接三角形,∠AOB=110°,则∠ACB的度数为()A.35°B.55°C.60°D.70°4.图中的两个三角形是位似图形,它们的位似中心是()A.点PB.点DC.点MD.点N5.下列事件中,必然发生的为()A.奈曼旗冬季比秋季的平均气温低B.走到车站公共汽车正好开过来C.打开电视机正转播世锦赛实况D.掷一枚均匀硬币正面一定朝上6.如图,两个反比例函数和在第一象限内的图象依次是C1和C2,设点P在C1上,轴于点C,交C2于点A,轴于点D,交C2于点B,则四边形PAOB的面积为()A.2B.3C.4D.57.函数和在同一坐标系中的图象大致是()A.B.C.D.8.如果两个相似三角形的相似比是1:2,那么它们的面积比是()A.1:2B.1:4C.1:D.2:19.4的平方根是()A.2B.–2C.±2D.±10.如图,已知△AOB与△A1OB1是以点O为位似中心的位似图形,且相似比为1:2,点B的坐标为(-1,2),则点B1的坐标为()A.(2,-4)B.(1,-4)C.(-1,4)D.(-4,2)11.若均为锐角,且,则().A.B.C.D.12.下列实数:,其中最大的实数是()A.-2020B.C.D.二、填空题(每题4分,共24分)13.已知点P(a,b)在反比例函数y=的图象上,则ab=_____.14.已知二次函数,用配方法化为的形式为_________________,这个二次函数图像的顶点坐标为____________.15.已知a、b、c满足,a、b、c都不为0,则=_____.16.方程的两根为,,则=.17.关于的一元二次方程有实数根,则实数的取值范围是________.18.在中,,,则______________.三、解答题(共78分)19.(8分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.20.(8分)已知正方形中,为对角线上一点,过点作交于点,连接,为的中点,连接.(1)如图1,求证:;(2)将图1中的绕点逆时针旋转45°,如图2,取的中点,连接.问(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.(3)将图1中的绕点逆时计旋转任意角度,如图3,取的中点,连接.问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)21.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度.(1)画出关于轴的对称图形;(2)将以为旋转中心顺时针旋转90°得到,画出旋转后的图形,并求出旋转过程中线段扫过的扇形面积.22.(10分)二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;(3)当△FPM是等边三角形时,求P点的坐标.23.(10分)如图所示,已知在平面直角坐标系中,抛物线(其中、为常数,且)与轴交于点,它的坐标是,与轴交于点,此抛物线顶点到轴的距离为4.(1)求抛物线的表达式;(2)求的正切值;(3)如果点是抛物线上的一点,且,试直接写出点的坐标.24.(10分)为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.(1)m=%,这次共抽取了名学生进行调