预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,已知在平面直角坐标系xOy中,O为坐标原点,抛物线y=﹣x2+bx+c经过原点,与x轴的另一个交点为A(﹣6,0),点C是抛物线的顶点,且⊙C与y轴相切,点P为⊙C上一动点.若点D为PA的中点,连结OD,则OD的最大值是()A.B.C.2D.2.如图,点M在某反比例函数的图象上,且点M的横坐标为,若点和在该反比例函数的图象上,则与的大小关系为()A.B.C.D.无法确定3.已知:抛物线y1=x2+2x-3与x轴交于A、B两点(点A在点B的左侧),抛物线y2=x2-2ax-1(a>0)与x轴交于C、D两点(点C在点D的左侧),在使y1>0且y2≤0的x的取值范围内恰好只有一个整数时,a的取值范围是()A.0<a≤B.a≥C.≤a<D.<a≤4.如图,点在反比例函数的图象上,过点的直线与轴,轴分别交于点,,且,的面积为,则的值为()A.B.C.D.5.如图,已知AB∥CD,AD=CD,∠1=40°,则∠2的度数为()A.60°B.65°C.70°D.75°6.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.6B.C.9D.7.如图所示,在矩形中,,点在边上,平分,,垂足为,则等于()A.B.1C.D.28.下列函数的对称轴是直线的是()A.B.C.D.9.将分别标有“走”“向”“伟”“大”“复”“兴”汉字的小球装在一个不透明的口袋中,这些球除汉字外完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字组成“复兴”的概率是()A.B.C.D.10.若函数y=的图象在其象限内y的值随x的增大而增大,则m的取值范围是()A.m>2B.m<2C.m>-2D.m<-2二、填空题(每小题3分,共24分)11.2019年12月6日,某市举行了2020年商品订货交流会,参加会议的每两家公司之间都签订了一份合同,所有参会公司共签订了28份合同,则共有_____家公司参加了这次会议.12.在Rt△ABC中,∠C=90°,若AC=3,AB=5,则cosB的值为__________.13.把抛物线沿着轴向左平移3个单位得到的抛物线关系式是_________.14.如图,点A、B、C在半径为9的⊙O上,的长为,则∠ACB的大小是___.15.一件商品的标价为108元,经过两次降价后的销售价是72元,求平均每次降价的百分率.若设平均每次降价的百分率为x,则可列方程_________.16.飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数关系式是y=60t-t2,在飞机着陆滑行中,最后2s滑行的距离是______m17.反比例函数的图象在一、三象限,函数图象上有两点A(,y1,)、B(5,y2),则y1与y2,的大小关系是__________18.如图所示的两个四边形相似,则的度数是.三、解答题(共66分)19.(10分)两个相似多边形的最长边分别为6cm和8cm,它们的周长之和为56cm,面积之差为28cm2,求较小相似多边形的周长与面积.20.(6分)如图,点D,E分别是不等边△ABC(即AB,BC,AC互不相等)的边AB,AC的中点.点O是△ABC所在平面上的动点,连接OB,OC,点G,F分别是OB,OC的中点,顺次连接点D,G,F,E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由)21.(6分)如图,在平面直角坐标系中,点从点运动到点停止,连接,以长为直径作.(1)若,求的半径;(2)当与相切时,求的面积;(3)连接,在整个运动过程中,的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.22.(8分)在平面直角坐标系xOy中,一次函数y=2x+b的图象与x轴的交点为A(2,0),与y轴的交点为B,直线AB与反比例函数y=的图象交于点C(﹣1,m).(1)求一次函数和反比例函数的表达式;(2)直接写出关于x的不等式2x+b>的解集;(3)点P是这个反比例函数图象上的点,过点P作PM⊥x轴,垂足为点M,连接OP,BM,当S△ABM=2S△OMP时,求点P的坐标.23.(8分)一只