预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共26页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,四边形与四边形是位似图形,则位似中心是()A.点B.点C.点D.点2.关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15°B.30°C.45°D.60°3.已知点,,在二次函数的图象上,则的大小关系是()A.B.C.D.4.如图,为的直径,和分别是半圆上的三等分点,连接,若,则图中阴影部分的面积为()A.B.C.D.5.下列各式计算正确的是()A.B.C.D.6.如图,中,,若,,则边的长是()A.2B.4C.6D.87.把函数y=﹣3x2的图象向右平移2个单位,所得到的新函数的表达式是()A.y=﹣3x2﹣2B.y=﹣3(x﹣2)2C.y=﹣3x2+2D.y=﹣3(x+2)28.已知AB、CD是⊙O的两条弦,AB∥CD,AB=6,CD=8,⊙O的半径为5,则AB与CD的距离是()A.1B.7C.1或7D.无法确定9.下列方程中,为一元二次方程的是()A.2x+1=0;B.3x2-x=10;C.;D..10.如图,已知在平面直角坐标系xOy中,O为坐标原点,抛物线y=﹣x2+bx+c经过原点,与x轴的另一个交点为A(﹣6,0),点C是抛物线的顶点,且⊙C与y轴相切,点P为⊙C上一动点.若点D为PA的中点,连结OD,则OD的最大值是()A.B.C.2D.二、填空题(每小题3分,共24分)11.某工厂1月份的产值为50000元,3月份的产值达到72000元,这两个月的产值平均月增长的百分率是多少?12.如图,在中,.动点以每秒个单位的速度从点开始向点移动,直线从与重合的位置开始,以相同的速度沿方向平行移动,且分别与边交于两点,点与直线同时出发,设运动的时间为秒,当点移动到与点重合时,点和直线同时停止运动.在移动过程中,将绕点逆时针旋转,使得点的对应点落在直线上,点的对应点记为点,连接,当时,的值为___________.13.如图,在菱形中,对角线交于点,过点作于点,已知BO=4,S菱形ABCD=24,则___.14.已知,如图,,,且,则与__________是位似图形,位似比为____________.15.如图,以点为圆心,半径为的圆与的图像交于点,若,则的值为_______.16.如图,在中,是斜边的垂直平分线,分别交于点,若,则______.17.已知扇形的面积为4π,半径为6,则此扇形的圆心角为_____度.18.如图,抛物线y=﹣(x+1)(x﹣9)与坐标轴交于A、B、C三点,D为顶点,连结AC,BC.点P是该抛物线在第一象限内上的一点.过点P作y轴的平行线交BC于点E,连结AP交BC于点F,则的最大值为_______.三、解答题(共66分)19.(10分)若方程(m-2)+(3-m)x-2=0是关于x的一元二次方程,试求代数式m2+2m-4的值.20.(6分)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象交于点A(-1,6),B(a,-2).(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出y1>y2时,x的取值范围.21.(6分)如图,AB是⊙O的直径,半径OD与弦AC垂直,若∠A=∠D,求∠1的度数.22.(8分)如图,抛物线与x轴交于A(1,0)、B(-3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标.(2)试判断△BCD的形状,并说明理由.(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.23.(8分)如图,内接于,且为的直径.的平分线交于点,过点作的切线交的延长线于点,过点作于点,过点作于点.(1)求证:;(2)试猜想线段,,之间有何数量关系,并加以证明;(3)若,,求线段的长.24.(8分)如图,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接.(1)求抛物线的解析式;(2)点在抛物线的对称轴上,当的周长最小时,点的坐标为_____________;(3)点是第四象限内抛物线上的动点,连接和.求面积的最大值及此时点的坐标;(4)若点是对称轴上的动点,在抛物线上是否存在点,使以点、、、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;